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Abstract

The synchronization of text transcripts with audio tracks is typically solved by forced alignment at

the phonetic level. However, when dealing with either very long audio tracks or acoustically inaccurate

text transcripts, more complex methods are needed, usually based on heavy and costly ASR systems. In

a previous work, we showed that a simple and lightweight method could be effectively applied, based

on a free phonetic decoding of the speech signal and the alignment of the free and reference phonetic

sequences, allowing the transfer of timestamps from the former to the latter. This method has yielded

competitive results on the Hub4-97 dataset and is currently applied to synchronize the videos and minutes

of the Basque Parliament plenary sessions.

In this paper, probabilistic kernels (similarity functions) are applied, based on the hypothesis that a

confusion matrix computed from a large corpus of speech conveys key information about the behavior

of the phonetic decoder, and that the probabilistic interpretation of this information may help design

informative kernels leading to improved alignments. The probabilistic kernels proposed in this work

outperform our baseline kernels and other alternatives, including a reference ASR-based approach and a

knowledge-based kernel, in experiments on the Hub4-97 dataset.
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Index Terms
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I. INTRODUCTION

The need to technically address accessibility issues is making video captioning an increasingly demand-

ing area for speech and language technologies. In 2007, the European Parliament established new rules

for the audiovisual industry that posed a significant pressure to the video producers and broadcasters.

At that time, there was no economically reasonable solutions to fit the new exigence levels: manual

processing would be too intensive and costly, whereas automatic technology was not applicable due to the

low quality of automatic speech recognition (ASR) techniques when applied without restrictions. In these

situations, a mixed approach can be applied by manually producing a text transcript and then automatically

aligning audio and text. In fact, this problem had been already addressed in the late nineties by several

authors [1][2]. Shortly afterwards, the method proposed in [3] achieved good quality results, provided

that relatively clean speech segments and accurate text transcripts were available. The approach worked

by first detecting fairly good matches between the text and the output of an ASR system customized

to the transcript, and then recursively processing smaller portions of the problem. More recently, other

related works have been reported which address different objectives, such as correcting human transcripts

[4], or dealing with highly imperfect transcripts [5]. In [6], an open source toolkit was presented based

on a complex strategy similar to [3]. More recently, different approaches aiming to also obtain simple

alignment procedures have been proposed [7] [8] [9], mostly related to the generation of resources for

training ASR systems.

The method proposed in [3] was really successful but required a large amount of resources and was

computationally costly. In [10], the same author presented a different approach, where the segmentation

of long sequences was performed at the acoustic level, rejecting noisy regions, and focusing on the nearly-

forced alignment of the selected portions. In [11][12], we applied an unconstrained phonetic decoder to

a long speech signal and aligned the recognized sequence of phones to the phonetic transcript derived

from the reference text (see Figure 1). The accuracy figures obtained in word-level alignment experiments

on the widely known Hub4-97 dataset [13] were only slightly lower than those reported in [3]. Being

fast and comparatively light in terms of both computational costs and required resources, we have been

using this system since 2010 to add subtitles to the videos of plenary sessions of the Basque Parliament.

These sessions include speech in both Spanish and Basque, and speakers switch frequently from one to

the other. Transcripts come from the official minutes, which are clean versions of the speech actually
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Fig. 1. Speech-to-text alignment is performed in this work by aligning a recognized phone sequence to the phonetic transcript

of the reference text (a). A straightforward approach consists in minimizing a distance metric like Levehnstein’s, but more

informative metrics may lead to better results (b).

uttered (sometimes disfluent or grammatically incorrect). Note that the lack of correspondence between

text transcripts and audio recordings increases the difficulty of the alignment task.

The two alignment strategies applied in [11] were: (1) maximum number of matches (MaxMatch), which

is related to the longest common subsequence problem [14]; and (2) the minimum edit (Levenshtein)

distance (MinDist) [15]. Taken as an optimization problem, the first strategy evaluates exact symbol

matches as positive events and tries to maximize the number of them, whereas the second strategy

evaluates mismatches (substitutions, deletions and insertions) as negative events and tries to minimize

the number of them. When comparing both strategies in terms of time deviations with regard to a

reference ground-truth, we observed that the MinDist approach provided slightly better performance than

the MaxMatch approach.

As suggested in [11], a potential way for improvement is the use of information about the phone decoder
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TABLE I

HUB4-97 DATA DISTRIBUTION PER CATEGORIES, AND PHONE ERROR RATES ON THE SIX MAIN CATEGORIES USING OUR

PHONETIC DECODER.

Cat. Description Time Words PhonERR

(Secs.) (count) %

F0 Baseline Broadcast Speech 4405 13040 41.4

F1 Spontaneous Broadcast Speech 1890 6331 48.6

F2 Speech Over Telephone Channels 1495 4672 57.3

F3 Speech in the Presence of Background Music 498 1554 53.3

F4 Speech Under Degraded Acoustic Conditions 1048 3263 48.6

F5 Speech from Non-Native Speakers 232 663 43.5

FX
All other speech (61 transcribed: other

languages + 71 non-speech: silence, mu-

sic, noise...)

1220 2528 —

?
Unclassified (not transcribed: mostly over-

lapped speech)
140 0 —

confusion probabilities (see Figure 1). In [16], this information is used along with two knowledge-based

probability functions.

In this paper, we present an alternative approach, where the information provided by the phone decoder

confusions is transformed according to probabilistic criteria. Three baseline systems will be considered

for comparison: the MaxMatch and MinDist systems, and the ASR-based system described in [3].

II. DATABASE AND PHONETIC DECODER

The Hub4-97 database contains about 3 hours of transcribed broadcast audio, classified into six

categories according to the acoustic conditions, plus a seventh category (Other) and an additional set

of Unclassified segments (see Table I).

The phonetic decoder used in this work is based on a 40-phone set for English. Acoustic models were

initialized on the TIMIT database [17] and then re-estimated on the Wall Street Journal database [18]. Left-

to-right monophone continuous Hidden Markov Models, with three states and 64 Gaussian distributions

per state, were used. It must be noted that, to keep things simple, the decoder was not particularly suited

to the Hub4-97 dataset, that is, no adaptation was performed. Phone error rates attained on the six main

Hub4-97 categories are shown in Table I. We would like to emphasize, at this point, that our alignment

approach is able to achieve competitive results even though a low performance phone decoder is used.
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III. CONFUSION MATRIX AND KERNELS

Let us consider a speech corpus for which text transcripts are available. Then, phonetic transcripts can

be easily extracted by applying either a pronunciation dictionary or a set of rules (or both). Let Σ be the

set of phonetic symbols, R the reference phonetic transcript of a speech utterance and H the phonetic

sequence hypothesized by a phonetic decoder when processing the speech utterance. Then, by aligning

all the pairs of sequences R and H in a dataset, we can get the counts crh representing the number of

times that symbols r, h ∈ Σ (r coming from R and h from H) have been paired together in those

alignments. Similarly, we can get the counts cr representing the number of times that a symbol r from R

has not been paired with any symbol (i.e. deleted), and the counts ch representing the number of times

that a symbol h from H has no counterpart in R (i.e. it has been inserted).

The pairings (r, h) can be matches (r = h) or substitutions (r 6= h), but this fact is irrelevant for the

rest of the work. We introduce the symbol ε in order to represent all these counts under a single structure

commonly known as a confusion matrix (c : Σ∪{ε}×Σ∪{ε} → N) considering cr ≡ crε and ch ≡ cεh.

A perfect decoder processing a perfectly labeled corpus should output a sequence of symbols identical

to the reference transcript, so that all counts in the confusion matrix would be zero except for the

diagonal elements. Any deviation from this unrealistic situation is somehow informed by the non-zero

counts outside the diagonal.

To take advantage from the information provided by the confusion matrix in the alignment procedure,

we must interpret and transform it into a kernel. Here we use the term ”kernel” in the sense it is used in

pattern analysis, meaning a similarity function over pairs of data. This kernel is the piece of information

used by a sequence alignment algorithm to evaluate different possible subsequence alignments. The

simplest one will evaluate different ways of confronting just two symbols, each one coming from one

of the aligned sequences. This can be done by considering the primitive editing operations: matches,

substitutions, deletions and insertions; or by considering different (particularized) evaluations for each

symbol, in a similar manner as that considered in the confusion matrix.

When confronting a symbol r from the reference and a symbol h from the hypothesis, the aligner will

need three kernel values: Krh, for the case of pairing them, Kr, for the case of deleting r (not taking

into account the presence of h), and Kh, for the case of considering h as an insertion (not taking into

account the presence of r).

IV. PROBABILISTIC KERNELS

The kernels proposed in this work are based on the probabilities of the three alternatives: Ppair, the

probability of pairing r and h; Pdel, the probability of deleting r; and Pins, the probability of inserting
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h. They can be estimated as the frequency of occurrence of each event in the master alignment:

Ppair = P (pair|r, h) = crh
/(
crh +

crε
N

+
cεh
N

)
(1)

Pdel = P (del|r) = crε
/(
crε +

∑
∀h

(crh +
cεh
N

)
)

(2)

Pins = P (ins|h) = cεh
/(
cεh +

∑
∀r

(crh +
crε
N

)
)

(3)

where N ≡ |Σ| is the number of phonetic symbols. N is used to normalize the counts in cases where

all possible contexts (represented by ε) have been added up. Note that these P(·) values do not sum up

to one, that is, we are not calculating the probability to take one of the three possible actions given a

confronted pair (r, h), since the deletion and insertion probabilities do not depend on both symbols (i.e.

Pr 6= P (del|r, h) , Ph 6= P (ins|r, h)). This fact will result in probabilistic kernels where the deletion

and insertion values, Kdel and Kins, will not depend on their corresponding context symbols, h and r,

respectively. Hereinafter, any kernel will be defined as:

K = {Kpair,Kdel,Kins} (4)

The sequence alignment algorithm aims to find the path that minimizes or maximizes the cumulated

kernel value, depending on the meaning of their figures, that can be costs or benefits respectively.

Regardless of which of the two representations is considered more natural, we can switch from one

to the other by inverting the sign of the values. For example, the two baseline kernels considered in this

work can be expressed as:

KMaxMatch = {δrh, 0, 0}r,h∈Σ (5)

Kcost
MinDist = {1− δrh, 1, 1}r,h∈Σ (6)

where K is a benefit kernel, Kcost is a cost kernel, and δrh is the Kronecker delta (δrh = 1 if r = h;

otherwise δrh = 0).

In this work, we adopt the benefit maximization representation, where the minimum distance kernel

is given by:

KMinDist = {δrh − 1,−1,−1}r,h∈Σ (7)

Next we define the three kernels that will be evaluated in this work.
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A. Expected Match Kernel

The MaxMatch kernel can be directly generalized to a probabilistic kernel just by using the probability

Ppair (i.e. the probability of r and h being paired in an alignment) instead of δrh:

KExpectedMatch = {Ppair, 0, 0} (8)

B. Expected Edit Distance Kernel

Similarly to the MaxMatch generalization, the MinDist kernel can be directly converted to a probabilistic

one that minimizes the expected number of editing operations (the expected edit distance). Given the

probability Pe of an event (a pairing, a deletion or an insertion), the probability of an edit error is 1−Pe,

and therefore, the benefits-based probabilistic kernel is:

KExpectedDist = {Ppair − 1, Pdel − 1, Pins − 1} (9)

C. Logit Kernel

The direct translation of probabilities to benefits (or costs) is a way of introducing some information that

could improve the alignment results, but a kind of logarithmic transformation converting the multiplicative

probabilities into additive benefits could better match the nature of the algorithm. Moreover, given the

symmetry of costs and benefits, a symmetric function mapping the [0, 1] domain to (−∞,∞) seems a

good candidate to be tried. The logit function: logit(p) = log(p/(1−p)) fulfills these requirements, so we

propose a logit kernel:

KLogit = {logit (Ppair), logit (Pdel), logit (Pins)} (10)

V. EXPERIMENTAL RESULTS

The different approaches presented in Section IV have been tested on the Hub4-97 dataset, using a

confusion matrix estimated on the WSJ training corpus. The alignment effectiveness is evaluated in terms

of the time deviation of each word hypothesized boundary with respect to the reference timestamps. This

reference was built by carefully performing forced alignment in small pieces and checking the results

by both hearing and visualizing them. The linguistic knowledge-based Kondrak kernel [16][19] was also

tested in order to evaluate the amount of phonetic information provided by the probabilistic kernels.

Table II presents the results of the tested kernels for different tolerance intervals. Both the Expected-

Match and the ExpectedDist kernels clearly beat their non-probabilistic versions (MaxMatch and MinDist),

whereas the results of the Kondrak kernel are halfway between them. The Logit kernel gets the most

competitive results, outperforming all the previous ones. Furthermore, at a much lower computational
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TABLE II

ALIGNMENT ACCURACY AT THE WORD LEVEL FOR DIFFERENT KERNELS. THE FIGURES REPRESENT THE PERCENTAGE OF

WORDS WITH HYPOTHESIZED BOUNDARIES CLOSER THAN A GIVEN DISTANCE |x| (IN SECONDS) TO THE TRUE

BOUNDARIES.

|x| < Max Min Expected Expected

seconds Match Dist Kondrak ASR[3] Match Dist Logit

|x| < 0.1 78.31 80.58 85.2 87.76 84.91 89.02

|x| < 0.2 86.75 89.70 92.23 93.64 91.83 94.4

|x| < 0.3 90.65 93.37 95.04 95.85 94.58 96.39

|x| < 0.4 93.50 95.74 96.88 97.39 96.51 97.79

|x| < 0.5 95.24 97.16 97.92 98.5 98.25 97.64 98.54

|x| < 1.0 98.48 99.31 99.63 99.58 99.58 99.71

|x| < 1.5 99.35 99.78 99.91 99.82 99.94 99.94

|x| < 2.0 99.70 99.91 99.97 99.75 99.87 99.98 99.98

cost and required resources, the Logit kernel attains the same performance than the reference method [3]

for both 0.5 and 2.0 seconds tolerance intervals.

The improvement provided by probabilistic kernels with respect to their non-probabilistic counterparts

can be easily explained by the fact that they include information about the confusability of the phone

decoder. If two different symbols r and h present a high confusion rate, they should be considered closer

to a match than another pair with a lower confusion rate, so the benefit of accepting a substitution should

be higher.

On the other hand, given that the simple ExpectedMatch kernel beats the Kondrak kernel, we can

hypothesize that the information extracted from the confusion matrix is rich enough to avoid the need of

any other source of linguistic information.

The high performance of the Logit kernel is in accordance with the criteria we adopted to propose it.

Given the probability estimate Pe of an event, all the other kernels produce bounded values whereas the

logit kernel produces values in the range (−∞,+∞). This means (for the bounded kernels) that even

in the case that Pe = 0, this event could be inside the selected path, because the contributions of other

pairings can compensate for it. A similar (symmetric) argument could be used for the case Pe = 1. On

the contrary, the Logit kernel value for Pe = 0 is −∞ and, therefore, this event will never belong to

the best path alignment, whereas for the case where Pe = 1, the kernel value is +∞ and, therefore, this

event must be part of the best path alignment.

Figure 2 shows the results for the six considered kernels and for the highest precision (|dev| < 0.1

seconds), broken down by the acoustic condition categories in Hub4-97. As expected, relative differences

among kernels are consistent across acoustic conditions. Moreover, the quality of the alignments does
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Fig. 2. Alignment accuracy (tolerance interval: 0.1 seconds) for the six kernels considered in this work, broken down by the

acoustic conditions of Hub4-97.

not degrade to a higher degree than the quality of the decoded phonetic transcripts. The phone error

rate ranges in [41.4, 57.3] whereas the corresponding alignment error ranges in [4.2, 19.7] (for the logit

kernel), the size of the interval being approximately 16 in both cases. This shows that the alignment

procedure performs reasonable well in all conditions. We should expect, however, that if the acoustic

conditions were extremely adverse, the decoded phonetic transcript may become almost random, and the

alignment procedure would probably fail.

VI. CONCLUSION

In this work, we have shown that the characterization of the phonetic decoder by means of a confusion

matrix can be effectively used to estimate an informative kernel able to achieve remarkable performance

gains in text-to-speech alignment of long audio tracks. The results obtained with a kernel based on

phonetic knowledge reveal that the information conveyed by the confusion matrix is more precise and/or

more specific to the particular task, leading to better performance.

As a potential line for future research, after using the system to align a speech signal to its text

transcript for the first time, a new confusion matrix may be estimated and used to realign the sequences.
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In this way, the second matrix would be adapted to the specific problem being treated. The new matrix

would carry information about specific phonetic confusability due to the particular acoustic conditions of

the signal, and about any specificity of the text sequence, which may eventually lead to a better result in

the new realignment. It would be interesting to check whether this iterative procedure would effectively

converge to a stable point with maximum alignment performance.
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