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Abstract

Volume modelling and visualization pose important challenges for scientific data handling. Neutron spectroscopy is

an intensity-limited technique where efficient data capture is a must. Such requirements are usually met using wide

angular coverage detectors. Such devices may generate several gigabytes of information produced for an individual

experiment, which needs to be handled within short lapses of time.

This paper describes a technique for the construction of a volume model using information coming from different

levels of ‘binning’ resolutions to be applied to the raw (as measured) data. The technique which is adaptive in nature

provides an efficient representation of the information, allowing one to explore in detail regions of the experimental 4D

space where the sought data are concentrated.
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1. Introduction

Since its very inception in the mid-fifties, the
study of excitations in condensed-matter bodies
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using neutron beams has vastly enlarged our
knowledge on microscopic space–time correla-
tions. Neutron scattering poses stringent limita-
tions to such an endeavor because of three main
reasons. First, the technique has been since its
beginning an intensity-limited tool. This results
from the nature of the process of neutron
production (fission reactors or accelerator-based
sources) which limits the achievable fluxes of
particles impinging on the specimen of interest.
y Elsevier B.V. All rights reserved.
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Second, a neutron spectroscopy experiment on a
crystal needs to explore a four-dimensional (4D)
space constituted by the three cartesian compo-
nents of the momentum-transfer vector Q as well
as the scalar energy-transfer. For most applica-
tions, data may be sparse, mostly being concen-
trated in some regions of space. Finally, the
statistical quality of the collected data may vary
substantially from one region to another in the
reciprocal (momentum-energy) space, because of
instrumental factors.

For reasons just outlined, an accurate represen-
tation of the measured data, including some
measure of their reliability constitutes the first
step in data treatment. To do so, an accurate
volume model needs to be developed from
observations together with available a priori
knowledge on the specific problem to be addressed
(eg. crystal symmetry etc.).

Traditionally, the scientific visualization pro-
cesses comprise three, well-defined stages:
(1)
2B

disc

arra

valu

to t

info

This

to p

volu
Model building (interpolation, binning, resam-
pling, subsetting, etc.).
(2)
 Mapping (drawing of contour plots, isosur-
faces, etc.).
(3)
 Rendering (conversion of a high-level object-
based description into a graphical image for
display).
Here we focus ourselves on the construction of a
volume model2 technique for data sets generated
by a neutron chopper spectrometer. This technique
[1,2], in which visualization techniques are still in
their infancy, requires building of a volume model.
Because of the need to detect and filter out
spurious data, as well as to avoid data correlation,
a new way of building a hierarchical grid is
proposed here. It is important to notice that
y volume model we refer to a process oriented to model

rete sets of massive data. These consist in n-dimensional

ys specifying spatial coordinates as well as the measured

e for the dependent variable. In this sense modelling refers

he process of wrapping those sets of data with extra

rmation regarding the characteristics of nearest neighbors.

will provide mapping tools with the necessary information

erform operations such as contour plots, isosurfaces or

me slices.
practically all visualization tools require some type
of volume model for their application, even in
more innovative scenarios as the integrated visua-

lization model proposed by Robertson and de
Ferrari [3] or the Steering Model proposed by
Earnshaw and Jern [4], the construction of a
volume model is required for the efficient analysis,
visualization and transmission of the scientific
data. Making the proposed model interesting in
other areas where intense limited tools are used,
also constitutes an aim of the work reported
herein.
2. Data characteristics

An idealized scattering experiment of the kind
we are interested in (direct geometry), consists in
the selection of a neutron beam with well-defined
energy and propagation direction (or wavelength
or neutron velocity), that is made to exchange
energy and momentum with the specimen of
interest. Energy and momentum exchange are
then measured in terms of the change in the
speed of the incident neutrons as well as in the
direction of the outgoing (scattered) beams.
For such a purpose a technique known as time-
of-flight is commonly used, where the change in
velocity of the outgoing neutrons is measured
by the time taken to reach a detector positioned
at a given distance while the change in momentum
is measured by the use of detectors positioned
at different angles with respect to the incoming
beam.
A given detector is thus placed at a given angle

with respect to the incident neutron beam, and
located at a distance L2 from the sample, while this
sits at L1 from the neutron source. A beam of
incident neutrons travelling with wave-vector K

*

ið¼

2p=lÞ where l stands for their De Broglie
wavelength, will interact with the sample resulting
in scattering at different angles, having final wave-
vector K

*

f .
The relevant quantities here are the momentum

transferred to sample

Q
*

¼ K
*

i � K
*

f
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3The experimental technique (direct geometry) requires to fix

the value of K
*

i, which means that it is possible to express the

wave vector-energy space in terms of just three vectors, because

the ðQ
*

h;Q
*

l ;Q
*

k ; �Þ components are not independent. (In the case

of indirect geometry the fixed parameter would be K
*

f , not

affecting the projection, from 4D to 3D space.)
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as well as the energy exchange

� ¼
_2

2mN

ðjK
*

ij
2 � jK

*

f j
2Þ. (1)

The change in neutron energy is thus determined
by the corresponding change in the time taken to
reach the detector t. As we are dealing with
neutrons within the thermal and epithermal ranges
(below some eV or so) non-relativistic mechanics
holds and thus the neutron velocity is calculated
from ~v ¼ L=T , where L ¼ ðL1 þ L2Þ is the total
flight-path. The neutron energy is then given by

E ¼ 1
2
mN~v

2. (2)

As a result, by measuring the time-of-arrival of
neutrons to the detectors one derives the final wave
vector for each one of the detected neutrons.

A crystalline solid by virtue of its inherent
anisotropy requires a three-dimensional (3D)
variable to describe its structure. The latter is
specified in full in terms of a decomposition into
crystal planes that are indexed according to well-
established procedures (Miller indices). Because of
the nature of the experimental technique the
position of an entity within the crystal is most
conveniently described by setting ourselves within
the reciprocal (Fourier) space. There, the crystal
planes are specified in terms of three h, k, l indices
and the change in momentum thus involves a 3D
variable Qhkl. In other words, the information
provided by a scattering experiment involves
searches within a 4D space, energy-transfer being
the additional dimension. This sets our basic
problem as one dealing with searches over a 4D
space that contains the relevant information with-
in rather restricted regions. That is, the scattered
intensities corresponding to static (positional)
correlations give rise to strong intensity ‘spots’
within Qhkl leaving most of it empty. Conversely,
the signature of atomic or spin motions will be
comprised within narrow regions of ½Qhkl;DE�.

For a severely intensity-limited technique ex-
ploration of the adequate portions of ½Qhkl;DE� is
thus a must. Information will come in the form of
histograms of spectrum number and time-of-flight
bin. These quantities are then converted into
momentum-transfer and frequency (or energy-
transfer).
This study is focused onto the most demanding
case, that are single-crystal experiments performed
on time-of-flight neutron spectrometers. Last
generation machines employ Position Sensitive
Detectors (PSD) that provide close to continuous
coverage over a large solid angle array in the
forward direction (about 160,000 detector pixels
and an additional narrower strip of detectors in
the horizontal plane). On such instruments one
can control the resolution in both momentum and
energy transfers by choosing different incident
energies and instrument setups. Such a pixellated
detector array gives the experimenter a possibility
for high-speed visualization and data assessment.
Development of analysis software thus plays a
vital role in the exploitation of data. Time-of-flight
and pixel position of the scattered neutrons are
stored in an array of 108 pixels, from which the
scattering function is constructed, in software, in a
volume of reciprocal space of typically containing
107 volume elements.
The data are then represented as intensity (i.e.

neutron counts) measured along some trajectories
within wave vector-energy space. The origin of
these trajectories define a two-dimensional (2D)
grid and so a set of trajectories defines a data
volume. The data format of interest for physicists
corresponds to projections in wave vector-energy
space ðQ

*

h;Q
*

l ;Q
*

k; �Þ. These projections are called
viewing axes U

*

1;U
*

2;U
*

3,
3 and for the purpose of

plotting they should be chosen to be orthogonal.
Notice that the fourth vector-component, that is
the energy axis is, by definition orthogonal to all
wave vector components.
Our aim here is to provide the necessary

technology to be able to apply the different volume
visualization techniques in this scientific area. The
nature of the problem, requires to re-bin raw data
in a hierarchical grid over relevant viewing axes,
retaining high flexibility and preserving high
statistics areas. This will necessarily pass through
the construction of an adaptive volume model that



ARTICLE IN PRESS

I. Bustinduy et al. / Nuclear Instruments and Methods in Physics Research A 546 (2005) 498–508 501
keeps track of local variations, choosing a large
integration step on low statistics zones, and a small
integration step otherwise.
3. Related work

Work previously reported mostly deals with 2D
images. Within those, the Adaptive Intensity
Binning of Sanders and Fabian [5], is perhaps a
close precursor of the methods described below.
Such authors consider a bin as a collection of
pixels, meaning by a pixel one of the individual
picture elements. The algorithm attempts to
adaptively bin a single image based on the number
of photons in each region. The number of pixels
plotted in a graph is always constant, as also is the
number of pixels that form the image. Its main
interest is to facilitate human perception, plotting
with the same color, pixels, that are contained in
the same bin. This may present problems in cases
where, for example, we have two bins a and b,
where a is made by just one pixel (good statistics),
and the bin b, is made by 15 pixels, (bad statistics),
depending on the user-selected color scaling, high
statistics areas are practically undistinguishable by
the user.

Also, a Voronoi Tessellation scheme has been
discussed by Cappellari and Copin [6]. There,
Centroidal Voronoi Tessellation is employed to
produce optimal 2D binnings. The procedure
introduces some improvements, and in particular
it satisfies the Topological, Morphological and
Uniformity Requirement presented by the authors
of the paper (Fig. 1).

The algorithm presented in this paper shares a
viewpoint close to that presented by Sanders and
Fabian. Our choice was determined by factors
related to the size of our input data (8 million
counts per experiment), as well as the ease in
implementing 3D versions.
4. Multiresolution algorithm

In contrast to a common binning algorithm,
where given a data space a grid is built just
adding to the bin all the counts or data points
enclosed into the boundaries of the bin b ¼

fb1;b2; b3; . . . ;bkg, the multiresolution binning
algorithm herein described, creates an adaptive
volume model from discrete volume data.
By convention we will consider here the term bin

or pixel as a collection of counts or data points,
where the data points are simply the raw data we
want to analyze. The pixel term will be used when
dealing with images produced by equal-width or
fixed binning algorithms.
We will construct a grid where the bin size is not

fixed, but rather the boundaries of each bin will be
determined by the statistics of the data points that
encloses each bin. Each data set has its own
peculiarities; each instrument has its own unique
data collection characteristics, and a given sample
will produce different intensity patterns depending
on the incident neutron energy, sample orienta-
tion, temperature and pressure. It is therefore
impossible to determine a priori the statistical
function that will define the bin size, and to
implement a predefined automatic decision about
the general parameters for the representations.
The way to determine these parameters is to allow
the user to interact with the data to optimize them
for each particular data set [7–9]. Each scientist
knows better than anybody the particular behavior
of their sample. In particular, the user establishes
the boundaries of the grid, the maximum binning
size, and the minimum binning size applied to each
dimension, as well as the ratio error/intensity,
RATIO that will act as a threshold, that will
control the size of each bin.
The algorithm will have bin counts on different

grid sizes (LEVELS) starting from the minimum
bin-size grid (LEVEL nL), where dimension is
determined by the user, up to the maximum bin
size grid (LEVEL 1), in each LEVEL: the
algorithm will calculate the arithmetic mean of
intensity and the associated error value in each bin
as follows:

S ¼
1

n

Xn

i¼1

SðxiÞ

ERR ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ERRðxiÞ
2

s
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Fig. 1. To illustrate the multiresolution algorithm consider the 2D case, where the number of levels (nL) is equal to 3, and the

resolution pattern has chosen to be determined by the Level 2 binning size, although the principles can be extended trivially to higher

dimensions.
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where n stands for the data points xi, enclosed
by the boundaries of this bin. In our case the
limits are taken as inclusive to the left and
exclusive to the right along each axis ‘[)’ to
maintain compatibility with existing binning algo-
rithms.
After that, a decision based on the error/signal
ratio is made about accepting the bin as a valid
one or not:
So IF ERR=SpRATIO
THEN this bin will be selected, and the data

points that form the bin, will be masked, removed
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from the original data set. This way we impose the
restriction that each data point will only con-
tribute, in full to one and only one bin. This action
is taken to avoid correlations between the errors
(ERR) for different bins.
ELSE counts collected onto this rejected bin will

be left to be binned presumably in successive
LEVELS.

This process will continue up to the maximum
binning size grid (LEVEL 1), doubling in each
LEVEL the size of the previous LEVEL bin, (from
ðDU1;DU2;DU3Þ at LEVEL j to
ð2DU1; 2DU2; 2DU3Þ at LEVEL j � 1) and remov-
ing those counts collected onto accepted bins.

Finally, the algorithm will mask the resulting
image with a characteristic pattern of the instru-
ment resolution, to avoid painting areas where
there is no real input data.

So, the method can be seen as consisting of three
steps. Given a DataSet of points fxg, the three
steps are:
(1)
 Construct the GRID for LEVEL ¼ 1, and
insert all data points x in DataSet into it.
(2)
 For each level;
� Extract the bins where ERR/S ratio is below
the threshold to the FINAL GRID

� Remove those contributing points from
GRID
(3)
 Mask the resulting image with the instrument
resolution pattern.
4.1. Implementation issues

In order to avoid possible problems related to
the boundaries that arise from the specification of
maximum and minimum binning size, the user is
left to specify the grid boundaries and the
maximum binning size, for each dimension. The
same applies to the threshold value (RATIO),
where the way in which the minimum binning
size specified is given by the number of levels (nL).
The algorithm will go up, doubling the size
of the bins. Another issue concerns how to deal
with data points having no signal ðS ¼ 0Þ. This
means an instability in our condition and the way
we have treated these points is to be above the
threshold.
The relationship between the resolution in each
axis is set from DUmax ¼ 2ðnL�1Þ � DUmin. This
means that the number of levels this algorithm
covers in each dimension will be the same. This
restriction allows us to use consecutive convolu-
tion products between matrices, improving the
execution time of the algorithm.
One of the main limitations is what to do with

the remaining points that the algorithm has not
collected, that is those which remain below the
threshold even if we use the largest binning size.
Different approximations have been taken such as
to avoid plotting the remaining points or collecting
them within the maximum binning size scheme,
and plotting them using a different transparency
level, with the aim of making them distinguishable
with respect to the accepted bins. Our own
experience tells that modification of the transpar-
ency attribute changes the perception of the color
adopted by the bin. It thus seems better to show
them with the same opacity level in the final image,
since the contextual visual information [10,7,9] is
more important than the imprecision we gain in
the last level of integration, giving some level of
uncertainty when the user visualizes the biggest
bins.
The final implementation enables the user to

fully interact with the algorithm by means of a
Graphical User Interface, enabling to choose the
boundaries, binning maximum and minimum sizes
for each axis, error-intensity threshold and color
axis scaling.
5. Results

5.1. 2D results

Although the algorithm has been largely used in
different kinds of experiments, the following
graphs correspond to experimental measurements
on spin-dynamics of hexagonal cobalt [13] using
the MAPS spectrometer located at the ISIS pulsed
neutron source. Our choice is motivated by several
reasons: it is a valid example of ‘low counting’
experiment, where the present technique is a must,
and it also has a considerable number of counts to
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be analyzed (8� 106). These factors make this
sample very suitable.

The most widely used method of volume
visualization, consists in creating successively 2D
plots, through cuts along the data volume. This
provides a compromise between speed of volume
viewing and accuracy of representation of details.
It however presents some deficiencies, that will be
explained below. At present, the available visua-
lization software (named Mslice [11]), requires to
take a slice of data as a function of any two
variables from the four components of momentum
and energy transfer ðQ

*
; �Þ.

As a result, we obtain 2D color intensity plots
that are shown in Fig. 2(a) and (c), where the bin
size will be constant over the entire graph, the user
will then be asked to decide whether to take a
small, or large bin size, which of course, will be
determined by statistics of the overall experiment,
not adapting to the local peculiarities. At present
Mslice allows a gaussian filter to smooth the
obtained 2D color plot, helping the user to gain
some insight of the dominant patterns (Fig. 2(d)
and (b)). This represents the conventional solution
adopted to represent ‘low statistics’ data, or to
stand out a signal from the background. The
chosen smoothing filter, a gaussian shape kernel,
acts as a low pass filter, providing a gentler
smoothing and preserving edges better than
similarly sized common mean filters. In this
particular case, the kernel is a rotationally sym-
metric gaussian low-pass filter of size 3� 3 pixels,
with an standard deviation of approximately 0.5.
The higher-order smoothing can be obtained by
repeatedly convolving the same kernel.

In both previously mentioned figures, a pattern
can be perfectly recognized, nevertheless, using a
convolution filter we are introducing some data
correlation, as the output will be a weighted
average of each pixel’s neighborhood, with the
average weighted toward the value of the central
pixels. Such weighted average is only given in
terms of intensity, since the error tolerance is not
considered here. As a result we have that a pixel
with a very low accuracy contributes the same way
as it has a very high accuracy pixel, thus loosing
accuracy in the displayed information. This could
obviously mislead the researcher, since measured
data may not be clearly distinguishable in the
obtained patterns.
Notice that especially in Fig. 2(b), most of the

noise is still there, although it has decreased in
magnitude somewhat. It has been smeared out
over a larger spatial region. Increasing the
standard deviation of the gaussian kernel, con-
tinues not only to reduce/blur the intensity of the
noise, but also attenuates the high-frequency
details (e.g. edges) significantly.
Finally, let us glance at Fig. 2(f) which is

produced by the multiresolution algorithm. It not
only displays information about the average
intensity in each pixel but also yields the associated
error bar. The intensity is represented by assigning
color to the pixel, where the accuracy of such a
measure will be given by the size of the pixel. In
addition it represents the outline of the input data
more accurately than the current implementation
of the ‘fixed’ binning algorithm, where the
boundaries of the detectors are not handled
properly. In particular, we could wrongly infer
from Fig. 2(d) that there is a high intensity peak
centered in the ½U1 ¼ �0:35; U2 ¼ 1; U3 ¼ 3�
position, where it is clear, see Fig. 2(e), that there
is no input data.
We can also integrate along the third axis in

some restricted range, in addition to specifying the
integration ranges in the other two orthogonal
directions. The result is then a 1D graph which
traditionally gives accurate information, showing
the intensity values, and their correspondent error-
bars. Unfortunately, this plot only shows a very
narrow information of the entire experiment, not
letting users appreciate the nature of the experi-
ment as a whole (Fig. 3).

5.2. 3D results

The present algorithm, was also implemented to
construct a 3D grid, see Fig. 4. Volume visualiza-
tion enables us to obtain a broader vision of the
experiment, allowing to localize the area of
interest, fast and accurately. It may also be
possible to stick out properties of the material
under study, that otherwise, using the traditional
system; using 2D slices, would not be noticed. As a
practical example, a crystal misalignment was
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Fig. 2. Represents different color maps, integrated along the perpendicular axis U3 ¼ ½0; 0;Ql ; 0�, from 2.9 to 3.1. Being

U1 ¼ ½Qh; 0; 0; 0�, and U2 ¼ ½0:5Qh;�Ql ; 0; 0�. In all cases the color bar has chosen to go from 0 to 4 (abs. units). From (a) to (b)

the figures have been produced using an equal-width binning algorithm, where bin size is ½0:0125; 0:0125�. From (c) to (d) bin size is

½0:05; 0:05�. Fig. (e) represents a scatter plot of raw input data. Fig. (f) has been produced using the present algorithm, with a threshold

of 0.35, going from the maximum binning size: ½0:2; 0:2� to the minimum binning size: ½0:0125; 0:0125�. (a) Minimum binning size—

‘fixed’ binning algorithm. (b) Smoothed minimum binning size—‘fixed’ binning algorithm. (c) Optimal binning size—‘fixed’ binning

algorithm. (d) Optimal binning size—‘fixed’ binning algorithm after using a gaussian shape smoothing filter. (e) Input raw data. (f)

‘Multiresolution binning’ Algorithm.

I. Bustinduy et al. / Nuclear Instruments and Methods in Physics Research A 546 (2005) 498–508 505
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Fig. 3. High-energy spin waves in cobalt: electrons are also magnetized and hence much of the magnetism is delocalized. Low-energy

excitations can be understood as spin wave modes, but at high energies they become damp due to interactions with single electron–hole

excitations (Stoner modes), and interband resonances. The viewing axes have been chosen as U1 ¼ ½Qh; 0; 0; 0� and U2 ¼ Energy.

Integrated along the perpendicular axis U3 ¼ ½0:5Qh;�Ql ; 0; 0�, from 0.8 to 1.2. Image is mapped by means of different binning sizes,

with a threshold of 0.35, going from the maximum binning size: ½0:2; 32� to the minimum binning size: ½0:0125; 2�. Color codes display
the logarithm of the signal intensity.

I. Bustinduy et al. / Nuclear Instruments and Methods in Physics Research A 546 (2005) 498–508506
discovered analyzing data from previous experi-
ment [12], thanks to the 3D representation.

One of the most popular volume visualization
techniques consist in displaying surfaces of con-
stant intensity, better known as isosurfaces. Un-
fortunately, to get the most of this technique, it is
required to have a minimum quality in the input
data in terms of signal error, otherwise the
obtained image may be confusing. For very low
statistics data, it has been proven that the best way
of visualizing volume data sets consists in using
interactive slices and cuts of the volume under
study.

Once the volume data set has been constructed
we can apply the different volume visualization
techniques, we consider to extract better infor-
mation. In this case Fig. 4 shows constant
slices cutting the volume data set to bring this
information.

In the 2D version we could always modify the
thickness of the plane, adding more points to each
pixel. This will not affect the resolution in the
visualization of the plane. The net result of such an
addition will lead to an intensity that will be
smoothed in each pixel. In contrast, in the 3D
version the resolution in one axis and the
information contained in the rectangular cubic
lattice are linked. This forces us to think in terms
of rectangular cubic pixels, where the pixel size will
need a careful thinking, in order to choose the best
compromise between resolution and information
content. The choosing of a very narrow step in one
axis forces the perpendicular plane’s bins to
contain fewer points. Here again we rely on visual
feedback from the end users to choose the correct
dimensions.
6. Interactivity—CPU time

Time consumption is a fundamental issue to
ensure rapid visual feedback. The formulation of
queries by direct manipulation and the immediate
display of the results has many advantages for
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Fig. 4. Slices made from a volume data generated from cobalt

experiment using the 3D implementation of the multiresolution

algorithm. The used threshold value was again 0.35, and bin

sizes go from maximum bin size of ½0:2; 0:2; 0:4� to minimum

binning size of: ½0:025; 0:025; 0:05�, color bar goes from 0 to 4

(abs. units).
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both new and expert users. This enables users to
gain a deeper understanding of the data set,
providing information about the nature of the
problem that cannot be grasped with a static
representation [7,14,15].
A few measurements have been carried out to

test the computational cost of our algorithm. The
chosen data set for this estimation had a total of
8.036.160 data points to be analyzed:
This data set was tested on two different

machines:
�
 AMD DURON 1.3GHz Clock Speed, 1,024,000
KB of RAM
�
 INTEL XEON 2.4GHz Clock Speed, 2,096,092
KB of RAM

Fig. 5. compares the required CPU time to build a
2D grid. It represents three different runs: the
traditional binning algorithm, the same algorithm
after applying a gaussian filter, and the multi-
resolution algorithm. However, in practice we
work within the first 5 levels, which means a
resolution divergence of 24 times. The proposed
version takes less than 9 s to run.
7. Conclusion

Experiments with different data sets demon-
strate clearly the effectiveness of the multiresolu-
tion binning algorithm when compared with the
current ‘fixed’ version.
The current visualization technique constructs a

lattice where each pixel’s dimension is fixed for the
entire slice or volume. This entails the decision
between having good resolution (with the short-
coming of getting low statistics values) or trying to
get high statistics, making a broader integration,
to construct the lattice (and therefore loosing
resolution in high statistics areas of the reciprocal-
energy transfer space).
The main problems that a fixed binning algo-

rithm presents are that outliers may dominate the
final presentation and also skewed data are not
well handled. Correlation may exist when we try to
smooth it, even after using the most modern
adaptive kernel smoothing algorithms.
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Both versions, 2D and 3D of the multiresolution
algorithm, show information about the intensity
and its correspondent error-levels simultaneously
without distorting the resulting image. The size of
the pixels is used in a convenient way to stand out
the high–low statistics areas. By displaying high
statistics areas with higher resolution and poor
error/intensity ratio zones with lower resolution,
we not only filter the image but also show the
accuracy of the displayed intensity. This means
that, in principle we can guarantee that the
displayed information has a minimum level of
accuracy.

We thus have built a volume model, specifically
thought for the neutron scattering data, which will
enable the application of the different volume
visualization techniques. This opens a gate to the
application of the latest techniques to this field. It
is important to notice that practically all visualiza-
tion tools require some type of volume model for
their application, and therefore a correct imple-
mentation of a volume model will allow the
implementation of the different visualization
techniques that are already available for the rest
of the scientific areas, such as medical image
processing, earth sciences and so on [16,17].

Specifically the generated volume data sets were
visualized in terms of separate slices, not having a
true 3D representation of the data, limiting the
possibilities of the user. The mind can glean
information from animation that is virtually
impossible to obtain by separately viewing still
images [18]. The impact of iteration, which is
another dimension of scientific visualization, allows
the researcher, to cooperate with the computer by
directing the computations, increasing the chances
for inspiration, insight, and understanding.
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