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We report on an adaptive binning approach designed for data visualization within scientific
disciplines where counting statistics are expected to follow Poisson distributions. We envisage a
wide range of applications stemming from astrophysics to the condensed matter sciences. Our main
focus of interest concerns, however, neutron spectroscopy data from single-crystal samples where
signals span a four-dimensional space defined by three spatial coordinates plus time. This makes
widely used equal-width binning schemes inadequate since physically relevant information is often
concentrated within rather small regions of such a space. Our aim is thus to generate optimally
binned data sets from one-dimensional to three-dimensional volumes to provide the experimentalist
with enhanced ability to carry out searches within a four-dimensional space. Several binning
algorithms are then scrutinized against experimental as well as simulated data. © 2007 American
Institute of Physics. #DOI: 10.1063/1.2722398$

I. INTRODUCTION

Since its very inception about six decades ago as an
experimental tool for the investigation of structural and dy-
namic correlations on condensed matter samples !any solid
or liquid specimen of physical, chemical, geo-or biological
interest", the scattering of slow neutrons has established itself
as an unrivaled technique for a wide variety of scientific
problems. Experiments carried out using such techniques
suffer, however, from severe intensity limitations inherent to
present day neutron sources.

The present study focuses onto the most demanding kind
of experiments such as those performed on single-crystalline
samples using time-of-flight !TOF" spectrometers. Such
measurements aim to explore space-time correlations in
long-range-ordered matter that, by their very nature, subtend
a four-dimensional space where a given point is defined in
terms of three spatial coordinates !Qh ,Qk ,Ql" plus a fre-
quency. These constitute the Fourier space counterparts of
those three spatial plus time coordinates needed to specify
the oscillatory motion of a particle or a spin of electronic or
nuclear origin, embedded within a three-dimensional crystal.
The triplets h ,k , l are known as Miller indices and are used
to specify the locations in reciprocal space where Bragg
peaks may occur. Last generation TOF machines have prof-
ited from improvements in neutron optics devices !i.e., neu-
tron guides, choppers, and detectors", fast counting electron-
ics, as well as from the increasing capacity for storage and

retrieval of massive data sets. An example of such an instru-
ment is schematically shown in Fig. 1, and several others are
being built at present for new neutron sources such as the
Spallation Neutron Source project at Oak Ridge !Tennessee,
USA" or Japan Proton Accelerator Research Complex !To-
kai, Japan". Most of them employ position sensitive detectors
!PSDs" that provide close to continuous coverage over large
solid angles. In the particular case of the Time-of-Flight neu-
tron spectrometer !MAPS" instrument hosted by the ISIS
pulsed neutron source at The Rutherford Appleton Labora-
tory !United Kingdom", the 16 m2 area is approximately di-
vided into 36 864 square detector pixels. A total of %160 000
detector pixels are used there in the forward direction. In
addition, narrower strips of detectors provide additional an-
gular coverage within the horizontal plane. The raw data
each detector registers consists on histograms representing
neutron counts versus arrival time taken with respect to an
external reference. A data set thus comprises histograms of
neutron counts versus time stored by each individual detector
which sits at some given angular coordinates with respect to
the incident beam.

Because of intensity limitations inherent to neutron scat-
tering techniques, one usually needs to trade off instrumental
resolution !the resolving power" versus counting statistics.
The former, which concerns both momentum and energy
transfer, is usually controlled by judicious choosing of dif-
ferent incident energies of the incoming neutron beam as
well as proper instrument setups. Typical production runs
from an instrument such as MAPS will deliver data sets from
some 108 detector pixels. Such a large number of picture
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elements thus offer the experimentalist a good chance for
high-speed visualization and online data assessment, pro-
vided that adequate software visualization tools are avail-
able.

The data are represented as an intensity !i.e., neutron
counts" measured along some trajectories within wave-vector
energy space versus time of arrival at a given detector-pixel
position. For a given detector element such trajectories are
set by the neutron kinematics once the energy of the neutrons
impinging upon the sample is selected. They define a two-
dimensional !2D" grid and so a set of trajectories defines a
data volume. The data format of interest for most scientific
applications corresponds to projections within a four-
dimensional space constituted by the three components of
the momentum-transfer vector Q as well as a scalar quantity
that is the energy transfer !!". Practical performance of such
measurements by the TOF technique requires to set one of
the variables to a fixed value, which reduces the dimension-
ality of the problem !see Ref. 1 for more details". In the
sequel we will thus deal with three-dimensional problems. It
is also worth noticing that the end user will most of the time
carry out data analysis on 2D slices taken from the whole
three-dimensional !3D" data volume.

Studies on single crystals constitute extreme cases in dif-
ficulty because the regions where physical information is
concentrated are usually small. The instrumental resolution
achievable by the present generation of instruments is rela-
tively high, typically hundredths of Å−1 !1010 m−1" for reso-
lution in reciprocal space and fractions of meV
!%247 GHz" in frequency. However, in practical applica-
tions one needs to trade off signal to noise ratio !SNR" and
resolution in order to increase the statistical significance of
measured data. Because of the highly pixellated nature of
current detector systems, a balance between resolution and

statistics usually involves some sort of averages taken over
spatially close data. Amongst the commmonly used averag-
ing techniques, smoothing and equal-width binning !EWB"
are the most popular. Single-crystal samples usually show
large variations of SNR accross the detector elements and,
under such circumstances, smoothing algorithms are known
to introduce some artifactual correlations affecting neighbor-
ing data which are difficult to quantify. This limits the use-
fulness of smoothing techniques for quantitative data analy-
sis. On the other hand, EWB techniques average spatially
close data by using an integration step that remains constant
along the entire data set. By their very nature are nonadap-
tive techniques and very often high statistics areas are unnec-
essarily blurred in order to obtain a better view of the whole
image. Such considerations become even more important if
we consider that on the one hand some experiments require,
at present, the combination of different runs, and on the other
hand, next generation instruments like MERLIN !sited at the
ISIS pulsed neutron and muon Source, United Kingdom" are
expected to produce 20 times larger data sets.

Because of reasons given above, it becomes advisable to
use adaptive binning algorithms where the bin sizes are
adapted to local SNR regions: large bins result from low
statistics areas, while smaller bins will mark high statistics
regions. Several different adaptive binning schemes have
been reported mostly dealing with studies on color
histograms,2 compound partitioning,3 flow citometry,4–6 or
Dalitz diagrams.7,8 In this work we will build upon previous
works that dealt with processing of astrophysical images.
The work by Sanders and Fabian9 reports on an analysis
technique that involves subdividing a two-dimensional im-
age into blocks that are more homogeneous than the image
itself, thus revealing information about the structure of the
image. In contrast, a more adaptive approach is described by
Cappellari and Copin10 that employs Voronoi tessellations to
produce an optimal 2D binning algorithm, or a more recent
work by Diehl and Statler,11 where weighted Voronoi tessel-
lations are used. The purpose of these approaches is to obtain
a SNR target value as homogeneous as possible all over the
image. As a consequence, high statistics areas are blurred in
order to achieve the desired image homogeneity. In addition
to these contributions, we have previously reported on a
three-dimensional algorithm1 in which high-SNR areas re-
main in the final image without being blurred. However this
approach cannot guarantee that all bins that compose the
image will be above the specified SNR target value.

The aim of the present paper is to present adaptive bin-
ning algorithms that preserve high-SNR features free from
artifacts and are easy to implement in three or higher dimen
sions. This paper is organized as follows. Section II intro-
duces the Voronoi diagrams, which are the basis of the algo-
rithm presented in Sec. III; Sec. IV discusses the results ob-
tained from different sorts of reconstructions. Finally, Sec. V
discusses the conclusions.

II. BACKGROUND

From now on, the term polygon or bin will stand for a
collection of detector pixels we aim to analyze, and pixel,

FIG. 1. !Color online". A schematic drawing of the MAPS TOF chopper
spectrometer at the ISIS neutron source !sited at Rutherford Appleton Labo-
ratory, UK". A beam of incoming neutrons is monocromatized by means of
neutron velocity selector device previous to collision with the sample of
interest. Scattered neutrons are then counted by detectors covering large
solid angles. Such detectors forming PSD arrays count neutron events at a
given time after collision with the sample specimen. The figure identifies the
large PSD array as well as additional detectors !dark surfaces within the
horizontal plane". The detector-pixel size in reciprocal space is significantly
smaller than the resolution volume defined by other instrumental contribu-
tions.
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unless explicitly stated otherwise, will be used as a shortcut
for detector pixel.

Let us consider that each pixel has an intensity si and an
associated uncertainty or error bar ni. If we bin m pixels
together, the resulting intensity S and associated error values
N for the bin are calculated as follows:

S =
1
m&

i=1

m

si and N =
1
m
'&

i=1

m

ni
2. !1"

A. Previous work: Multiresolution algorithm

The multiresolution algorithm !MA", described in Ref. 1,
creates an adaptive volume model from discrete data. It
shares a common viewpoint with Sanders and Fabian9 in the
sense that for a given data set, the algorithm runs on a se-
lected number of levels sequentially. Let L denote that num-
ber. At each level a grid of bins is defined. The grid resolu-
tion !that is, the bin size" for each direction u1, u2, u3 is
established by the user.

Unlike the quadtree method,12which is performed from
largest to smaller bin sizes, this multiresolution algorithm
goes from smaller up to larger sizes, and removes already
collected pixels in order to avoid possible correlation be-
tween neighbors. This algorithm has been easily extended to
problems in higher dimensions. For a more in-depth discus-
sion of MA, see Ref. 1.

B. Voronoi tessellation

Although MA displays some interesting features !it is
fast, robust, and easy to extend to higher dimensions", its
usefulness is limited because the variation of bin size takes
place in steps that are a power of two of the spatial dimen-
sion. This calls for more adaptive ways of image reconstruc-
tion. Searching for methods not limited to rectangular bins,
one finds the Voronoi tessellation !VT" scheme, which has
been applied to a wide variety of problems within fields as
diverse as astronomy, biology, image and data analysis, re-
source optimization, sensor networks, geometric design, and
so on.13–20

Given a set P of n"2 points p1, p2 , . . . , pn in a
d-dimensional Euclidean space Rd, the idea beneath VT is to
divide the space into regions around each point in P, such
that all the points in the region around pi are closer to this
one than to any other point in P. Consider now two points pi
and pj in P, and write D!i , j" for the subset of points at least
as close to pi than to pj; that is,

D!i, j" = (r ! Rd:)r − pi) # )r − pj)* , !2"

where )·) stands for the Euclidean norm. Note that D!i , j"
#D!j , i". We call the Voronoi region of pi with respect to P,

V!i,P" = ! D!i, j" for j ! #1,n$ and i # j . !3"
The point pi is called a generator. Finally, the Voronoi dia-
gram VP of the set P is defined as

VP = " V̄!i,P" ! V̄!j,P" with i, j ! #1,n$ and i # j .

!4"

V̄ denotes the closure of V.

Each Voronoi region V!i , P" is by definition the intersec-
tion of m−1 open, convex, and in some cases unbounded
polytopes. The set VP of regions V!i , P", also known as Di-
richlet domain, tessellates the space surrounding P; it forms
a decomposition of the space. See Fig. 2 for an illustration.

Given a density function $=$!r" defined on VP, one can
calculate the centroids !defined in the sense of center of
mass" for each Voronoi cell as

zi =

+
V!i,P"

r$!r"dv

+
V!i,P"

$!r"dv
. !5"

A Voronoi tessellation of a given set such that the asso-
ciated generators are centroids !denoted by ẑi" of the corre-
sponding Voronoi regions is called a centroidal Voronoi tes-
sellation !CVT". The most significant property of CVT is the
minimization property of the following functional:

F!VP,P" = &
i=1

n +
V!i,P"

$!r")r − pi)2dv . !6"

This functional may represent whatever magnitude of inter-
est such as energy, village population, cost, any sort of error,
etc. If the points in P are centroids of its corresponding
Voronoi cells, the functional F is minimized. This is the rea-
son why CVTS have been applied to a wide number of
fields. Several approaches to construct CVTS are reviewed in
Ref. 13 and between those the deterministic method known
as Lloyd’s algorithm !see Ref. 21" has been perhaps the
mostly used. Following this algorithm, a CVT is constructed
by first determining the Voronoi regions of a given point set,
second, moving the generator of each region to the centroid
of that region, and third, iteratively repeating these two steps
until generators and centroids of each region converge. In the
following section we will see how we could profit from
CVTS.

FIG. 2. !a" Voronoi tessellation. !b" Centroidal Voronoi tessellation. On the
left, the Voronoi tessellation corresponding to 300 randomly points. The
underlying density function is an analytical ring-shape synthetic model. The
dots are the Voronoi generators. Note that the generators and the centroids
do not need to coincide. On the right, a centroidal Voronoi tessellation; the
dots are simultaneously the generators for the Voronoi tessellation and the
centroids of the Voronoi regions.
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III. NEW ADAPTIVE APPROACH

Now, let us return to the binning problem in neutron
spectroscopy. One of the most interesting characteristics of
CVTS is the ability to partition a region into bins whose
sizes vary as a function of the underlying density distribu-
tion. Therefore, if this density function is related to SNR, bin
sizes will be directly related to SNR. This question was
originally addressed for optimal vector quantizers used in
data compression and transmission by the so called Gersho’s
conjecture22 and translated into the language of CVTS by Du
et al.13

For one-dimensional problems, Gersho’s conjecture
states that considering that the density is bounded and strictly
positive, the size of the Voronoi intervals are inversely pro-
portional to one-third the power of the underlying density at
the midpoints of the intervals. This conjecture was used and
extended to n-dimensional problems by Capellari and
Coppin10 to use CVTS to partition a segment into equal SNR
intervals. In an n-dimensional problem, if the CVT is per-
formed on a density function $!r"= !S /N"!2+n/n"!r", this gen-
erates a VT with bins that asymptotically enclose a constant
mass !constant SNR" according to the density S /N. However,
the obtained VT is strongly dependent of the discrete nature
of input data. Consequently a method to find the generators
for the optimal VT was developed, the bin-accretion algo-
rithm. Nevertheless, all these results are limited to the case
where the underlying density adds in quadrature, i.e.,
!S /N"1+2

2 = !S /N"1
2+ !S /N"2

2.
In contrast to the cited work, where the sought objective

is to obtain an equal SNR bins scheme, we want to bin low
statistics areas in order to obtain a SNR above an established
threshold while preserving high statistics areas from being
unnecessarily blurred. In consequence, we need to find a cri-

terion to achieve the desired result. It is clear that, given a
CVT where the underlying density is a function of SNR,
$= !S /N"m, the higher the value of m, the sharper the varia-
tions of the density associated to CVT will be. Hence, for a
given number of generators, high density areas will be rep-
resented by more generators at the expense of lower density
areas. In order to obtain a more general approach, this pa-
rameter has been left up to the potential user. According to
our preliminary studies, m=2 offers a good compromise.
Thus, in order to perform the successive tests, $ will be set
up as $= !S /N"2.

In the following subsection we will present a different
approach that pursues the reconstruction of the observed data
in a more adaptive way, where the total number of pixels is
expected to be collected above an imposed threshold.

A. The adaptive tessellation algorithm

The adaptive tessellation algorithm !ATA" is not a mul-
tilevel approach, like MA. In ATA, the user selects the num-

FIG. 3. ATA approach illustration. Consider an initial set of generators
!white circles" placed by means of a Monte Carlo method. The number of
iterations is equal to 4. Centers of the circles represent the location of the
generator for each iteration, therefore concentric circles show that the gen-
erator does not move in the successive iterations.

FIG. 4. !Color online" !a"u2↑↘u3

↗u1 1D dispersion along the chain direction
!001" as a function of energy. !b"u3↑↘u1

↗u2 2D inelastic magnon scattering.
!c"u3↑↘u1

↗u2 3D spin wave modes. 3D reconstructions using different inputs:
1D !KCuF3 with u1= #0,0 ,Ql ,0$, u2= #0,0 ,0 ,!$, u3= #0,Qk ,0 ,0$", 2D !
Rb2MnF4 with u1= #Qh ,0 ,0 ,0$, u2= #0,Ql ,0 ,0$, u3= #0,0 ,0 ,!$", and 3D
!simulated cobalt with u1= #Qh ,0 ,0 ,0$, u2= #0.5Qh ,−1Qk ,0 ,0$, u3
= #0,0 ,Ql ,0$" magnetic system materials. Left figures show the reconstruc-
tion performed by means of MA approach; right figures unveil the recon-
struction performed by ATA algorithm.

043901-4 Bustinduy et al. Rev. Sci. Instrum. 78, 043901 "2007!
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ber of initial generators, and a Monte Carlo method places
them on the data set. The user also selects a SNR threshold.
The first step is to calculate a CVT !with a density function
related to SNR" for that set of generators. Thus, the starting
point is a CVT, centroids with their associated centroidal
Voronoi regions. Now, the algorithm iterates !see Fig. 3" the
following four steps until convergence, which will be defined
later.

!1" Verify the SNR condition for all centroidal Voronoi re-
gions. In those regions that satisfy the condition, add a
new generator.

!2" Calculate the CVT for the new set of generators !cen-
troids of the previous CVT plus new generators, all to-
gether".

!3" Verify the SNR condition for each new centroidal
Voronoi region. Remove centroids corresponding to re-
gions that do not satisfy the condition.

!4" Calculate the CVT of the remaining set of generators
!centroids of the previous CVT minus centroids of dis-
carded regions".

The question now is when to stop the iterative process.
Let us call n!N the number of iterations, and ,ẑn, the num-
ber of centroids the algorithm returns after iteration n. This
defines a sequence with an unknown limit. The Cauchy con-
verge criterion states that a sequence ẑn, with n in N for all n,
is convergent if and only if for every !%0, there exists an
N!N such that n ,m%N implies ,,ẑn,− ,ẑm,,#!. That is, the
algorithm will converge if there is a number of iterations

from which the number of centroids !,ẑi," get closer and
closer to each other. By default, != ,ẑn, /100 in ATA, but this
value can be changed by the users to suite their needs.

Compared to MA, ATA constitutes a simpler approach.
The users set the initial number of generators, the SNR con-
dition, and possibly, the value of ! that controls the conver-
gence. As a result, this unsupervised classification of pixels
into bins seems more suitable for a first-time exploration
process.

The ATA approach has been partly inspired by clustering
techniques used in speech recognition and compression. For
instance, the LGB algorithm23 and the ATA approach share
some common characteristics such as the idea of splitting the
centroids to minimize the distortion. The ATA approach can
then be described as a partitional clustering algorithm.

The next section will show some results to illustrate the
behavior of the algorithm presented in this paper.

IV. RESULTS

A. Metrics-data preparation

We have chosen several metrics to evaluate the results
obtained from the algorithms: the SNR mean value of bins
forming the image; the number !percentage" of pixels col-
lected into bins with a SNR above an imposed threshold, and
for simulated data, distortion !difference between original
and reconstructed images" was also evaluated by means of
the mean square error !MSE":

FIG. 5. !Color online" !a" EWB: &u1=&u2=0.032. !b" MA: maximum bin size in both dimensions is 0.101. !c" ATA: k=100. Spin waves on the near-critical
quantum antiferromagnet KCuF3, sliced in the projection space defined by u1= #0,0 ,Ql ,0$ and u2= #0,0 ,0 ,!$: T=5 for all algorithms and L=3 for all
algorithms except ATA, which does not require this parameter. Color map represents intensity !neutron counts".

FIG. 6. !Color online" !a" EWB: &u1=&u2=0.0461. !b" MA: maximum bin size in both directions is 0.098. !c" ATA: k=100 The spin wave spectrum of the
2D Heisenberg antiferromagnet Rb2MnF4, where the projection space is defined by u1= #Qh ,0 ,0 ,0$ and u2= #0,0 ,Ql ,0$: T=4 for all algorithms and L=3 for
all algorithms except ATA, which does not require this parameter. Color map represents intensity !neutron counts".
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MSE =
1
m&

i=1

m

!si! − si"2. !7"

In this equation, si is the value of the ith pixel in the
original image, si! is the value of the ith pixel in the recon-
structed one, and m is the total number of pixels in the whole
image. The lower the value of MSE, the smaller the differ-
ence between images and therefore a better result.

Notice that strict comparisons between the performance
of the different approaches is specially difficult since the
operation is accomplished in a very different way. The MA
requires some level of knowledge of the problem, whereas
ATA is an unsupervised process where the user only needs to
specify a threshold value T. Furthermore, none of the pre-
sented approaches use the same input parameters, exception
made of the threshold value T.

The definition of an image can be described as the de-
gree of detail in the graphic image. If the bins that made the
image tessellate the region properly, without holes or over-
laps, then the number of bins will be intimately related to the
image definition.

We next compare the performance of ATA and in order
to provide a comparison in a known context, EWB and MA
results are also given. The operation of all these algorithms is
very different, although a comparison is still possible as long
as the final image reconstructed by them has a similar num-
ber of bins. To achieve this, let us remember that ATA is the
simplest algorithm from the user’s point of view. By simplest
we mean that once the SNR threshold is set, there is little we
can do to control the number of final bins in the image since
it is an unsupervised process. So, ATA will determine the
number of bins within the images, and with that value in
mind, the input parameters of the rest of the algorithms are
tuned to achieve such a number, thus making a comparison
between them possible.

B. Type of data

To exemplify the performance of the algorithms reported
here, we made use of two kinds of data, are simulated data
blurred by statistical noise, and experimental data collected
in real experiments carried out in the spectrometer sketched
in Fig. 1. Simulated data consist of a pair of images blurred
by random white noise as well as other characteristic uncer-

tainties associated with experiments !e.g., instrument back-
ground". The experimental data consist of different measure-
ments of one-, two-, and three-dimensional magnetic
systems: the thermal fluctuations and magnetic order of the
near-critical quantum antiferromagnet KCuF3,24 the spin
wave spectrum of the 2D Heisenberg antiferromagnet
Rb2MnF4,25 and the collective motions of magnetic moments
within a metallic magnet such as cobalt.26

The simulated examples serve to evaluate the algorithms
as far as the reliability of the reconstruction of an image that
has been blurred by statistical Poisson noise is concerned.
On the other hand, real data pose additional problems such as
those derived from the finite efficiency of the detector sys-

TABLE I. Metrics from the 2D implementation. !A" Simulated data and !B"
experimental data.

!A" Simulated data

Data Algorithm MSE ,SNR,±std!SNR"

Collected
population

!%"

Ring MA 836.22 3.8±0.6 98.97
ATA 844.87 3.9±0.5 100.00
EWBa 802.69 4.8±1.5 91.09

KCuF3 MA 92.62 2.1±0.3 99.83
ATA 98.15 2.1±0.2 100.00
EWBb 90.57 2.3±0.6 86.78

!B" Experimental data
Data Algorithm ,SNR,±std!SNR" Collected

population
!%"

Cobalt MA 3.7±0.6 99.13
ATA 3.9±0.5 100.00
EWBc 4.1±1.3 84.02

Rb2MnF4 MA 5.5±1.8 88.50
ATA 5.7±0.2 100.00
EWBd 7.6±4.4 66.91

KCuF3 MA 7.6±3.1 96.10
ATA 7.3±2.2 100.00
EWBe 7.3±5.0 59.35

a&u1=&u2=6.2
b&u1=&u2=5.15.
c&u1=&u2=0.088.
d&u1=&u2=0.0461.
e&u1=&u2=0.0322.

FIG. 7. !Color online" !a" EWB: &u1=&u2=0.088. !b" MA: maximum bin size in both dimensions is 25.8. !c" ATA: k=100. Collective motions of magnetic
moments within cobalt; the spin dispersion volume is sliced in the projection space defined by u1= #Qh ,0 ,0 ,0$ and u2= #0.5Qh ,−Qk ,0 ,0$: T=2.86 for all
algorithms and L=3 for all algorithms except ATA, which does not require this parameter. Color map represents intensity !neutron counts".
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tems, the presence of a nonuniform background or sample
imperfections.

In order to present the results concerning the different
reconstructions, we will follow the procedure that a user
would possibly consider. The first step consists on a three-
dimensional exploration, which is usually characterized by
scarce information. A qualitative analysis is thus necessary to
bound the spatial regions where information is concentrated.
Once this is done, a quantitative examination is required by
means of inspection of sets of two-dimensional projections.
This is first done to assess the statistical data quality, the
importance of spurious contributions, etc. The last steps are

usually taken within one-dimensional projections and in-
volve testing the theoretically predicted models versus ex-
periment.

C. 3D implementation

The ATA algorithm deserves a special attention when
implemented in three and higher dimensions. It is the one
that, by construction, collects all the input pixels above a
given threshold value. Moreover, its behavior and the ensu-
ing results are rather uncoupled from the a priori knowledge
on a potential user.

FIG. 8. !Color online" !a" KCuF3 experimental data. !b" Rb2MnF4 experimental data. !c" Cobalt experimental data. !d" Ring-shaped simulated data. !e" KCuF3
simulated data. Collected SNR values !arranged in ascending order" by the different approaches for experimental and simulated data. Continuum line indicates
the threshold value T. Dashed lines show each different SNR mean value. Input parameters had been chosen in order to obtain an analogous image definition.

043901-7 Neutron spectroscopy data visualization Rev. Sci. Instrum. 78, 043901 "2007!
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Figure 4 shows the qualitative results of the three-
dimensional ATA implementation. These reconstructions are
accompanied by others performed by MA. A variety of mag-
netic systems are used as input to show that similar results
are obtained in both cases, except that ATA performs this
reconstruction without any expertise assistance.

D. 2D implementation

Results from the two-dimensional implementation are
presented in Figs. 5–7. Again, different types of experiments
are used to demonstrate the flexibility of the presented algo-
rithm.

Table I provides information concerning the reliability of
the reconstructed images in terms of the MSE metric. Here
we see that the best reconstruction corresponds to MA
whereas ATA yields to a rather distorted image. This is be-
cause ATA only controls one parameter that is the position of
generators, which determine the size and shape of the respec-
tive polygons. These polygons are built by interdependency
between generators, and therefore the modification of a
single generator affects the construction of the surrounding
polygons. Therefore, the method is to be considered as hav-
ing limited flexibility. In a practical vein, we have to trade
off between easiness of use and accuracy. The algorithm MA
constitutes a significant improvement over EWB. It is able to
adapt to the local details by means of a simple method, al-
though it might not be capable of ensuring that the image has
the minimum required precision.

Figure 8 shows the number of pixels collected through
the binning process and the SNR value of the bins that en-
closed them for simulated and experimental data. For a given
image definition, the tendency is repeated for each approach
for the different input trials. The proposed ATA collects all
the pixels above the threshold, as expected by its very de-
sign. A minimum level of precision is thus preserved in the
represented image.

On the other hand, the naive EWB algorithm obtains
some remarkable SNR-value pixels at the expense of leaving
a significant amount of information below the required pre-
cision level !see Table I". Low-SNR pixels are indistinguish-
able from the high-SNR ones; consequently, the bins from
which the image is constructed might contain important in-
accuracies.

E. 1D implementation

Although MA does not ensure that all pixels are col-
lected above the requested precision level, it can be conve-
niently adjusted to represent the peaks with the maximum
definition, as can be seen in Fig. 9. In contrast, little knowl-
edge from instrument users is required by ATA to obtain a
rather good reconstruction. In addition, it is the only one that
has been designed to collect all the input pixels above the
corresponding threshold value T, although the level of detail
achieved is lower. Moreover, as opposed to previous at-
tempts, the obtained scheme is the most straightforward
to use in comparisons between experimental data and theo-
retically predicted models due to the absence of levels.
Notice that in Fig. 9 the separation between detector

banks—affecting at the area close to −0.34 in #0.5Qh ,
−Qk ,0 ,0$—has been conveniently handled by MA and ATA.

F. Time consumption

Time consumption is a fundamental issue to ensure a
rapid visual feedback. The formulation of queries by direct

FIG. 9. !Color online" !a" Input data. !b" EWB: &u1=0.02. !c" MA: maxi-
mum bin size is 0.2. !d" ATM. 1D data reconstruction performed by the
different approaches over a cut along the u2= #0.5Qh ,−Qk ,0 ,0$ direction on
cobalt sample. Thickness range in u3= #0,0 ,Ql ,0$ goes from 2.9 to 3.1, and
in u1= #Qh ,0 ,0 ,0$ it goes from −0.4 to −0.2. The threshold value T of 2.86
was the same in all algorithms. Red marks indicate the bins below the
threshold value. The pattern shows an evolution close to the dispersion for a
Heisenberg ferromagnet.
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manipulation and the immediate display of the results has
many advantages for both new and expert users. This enables
the experimentalist to gain a deeper understanding of the
data set, providing information on the nature of the problem
that cannot be grasped using a static representation.

As we can see in Table II, the best performance in terms
of time consumption is MA. While this algorithm constructs
grids along the different levels in a deterministic way, ATA
requires additional iteration processes, resulting in a reduc-
tion of the time efficiency. The time complexity of MA is
O!n3", and O!n2" for ATA.

Taking into account the importance of time consump-
tion, we implemented ATA that offers a better balance for a
first-time exploration process in FORTRAN. Such a lower-
level programming language comes to be much more effi-
cient than MATLAB. We tested it on a IBM G5 with IBM XLF

compiler. Time consumption was dramatically reduced if
compared to the same algorithm using MATLAB, and the re-
sults are shown in Table II. Although MA still gives the best
results, it is clear that a better performance can be obtained
by means of code parallelization or hardware customization.

V. DISCUSSION

The algorithm herein described constitutes a significant
improvement over traditional equal-width binning proce-
dures as well as over the multiresolution algorithm previ-
ously reported on Ref. 1 It provides simultaneous displays of
both intensity data up to a given level of precision, and their
statistical significance.

The adaptive tessellation algorithm !ATA" uses pixel-
lated data above a given threshold to provide a full tessella-
tion of the available data space. That is, it provides image
reconstructions without leaving any empty patches and
avoiding overlapping regions. Furthermore, because of its
grounding on the use of centroidal Voronoi Tessellations
!CVTs", the algorithm becomes highly portable since the en-
tire image can be stored into two arrays containing the inten-
sities and the polygon generators, easy to transport into most
visualization schemes.

A drawback of the present implementation constitutes
the significant amount of CPU time involved in the compu-
tation presented here, specially compared to MA—although
MA algorithm does not ensure the reconstructed image com-
plies with the accuracy requirements. As a corollary of gen-
eral validity, the data presented here illustrate the need of

extending grid-computing procedures in order to provide the
end user with near real-time access to the results.

Finally, and on a broader scope, the work reported here
provides a contribution of interest to the general field of
scientific visualization where, as mentioned not long ago27,28

not only do the data need to be visualized but also their
associated uncertainties must be displayed.

The MATLAB and FORTRAN implementations of the algo-
rithm described in this paper is available from Ref. 29.
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TABLE II. Time consumption !seconds" for the different approaches, using random nonzero size data. ATA has
been also implemented in FORTRAN, using a 1.5 GHz IBM G5 !XL FORTRAN compiler".

Implementation

Random data

1000 10 000 20 000 30 000 40 000 50 000 100 000

MATLAB MA 0.14 0.22 0.36 0.97 2.70 5.62 14.97
ATA 2.50 110.22 472.73 895.91 1 606.00 2 825.00 11 221.00

XL ATA 0.04 2.89 14.13 30.96 63.16 90.03 369.59
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