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ABSTRACT

Phone Log-Likelihood Ratios (PLLR) have been recently
introduced as features for spoken language and speaker
recognition systems. This representation has proven to be an
effective way of retrieving acoustic-phonotactic information
into frame-level vectors, which can be easily plugged into
state-of-the-art systems. In a previous work, we began the
search of reduced representations of PLLRs, as a mean of
reducing computational costs. In this paper, we extend this
search, by looking for the optimal compromise between
feature vector size and system performance. Results achieved
by Principal Component Analysis projection on the PLLR
space are extensively analyzed. Also, to evaluate the effect
of using larger temporal contexts, a Shifted Delta transfor-
mation is applied (and its optimal configuration explored)
on highly reduced sets of PCA-projected PLLR features,
leading to further performance improvements over the best
PCA-projected PLLR set.

Index Terms— Spoken Language Recognition, Phone
Log-Likelihood Ratios, Total Variability Factor Analysis.

I. INTRODUCTION

Spoken Language Recognition (SLR) is Pattern Recogni-
tion task which consists of recognizing the language spoken
in an utterance by computational means. In the last years,
there is an increasing need of SLR technology, as new
applications are emerging and/or becoming popular, such
as multilingual conversational systems [1], spoken language
translation [2], multilingual speech recognition [3], spoken
document retrieval [4], etc.

The general structure of a SLR system involves four
stages (see Figure 1):

• Feature/token extraction, which aims to concentrate
in few and, as far as possible, independent (that is,
uncorrelated) parameters the information relevant to
the classification task.

• Applying a classifier which scores feature/token
sequences with regard to models of target languages.

• Applying a backend to normalize/calibrate the re-
sulting scores, which allows us to use a single

threshold for all the target languages and makes the
system work at the desired application point.

• Making a hard decision (which depends on the task).

Fig. 1. Structure of a Spoken Language Recognition (SLR)
system.

Two main complementary types of systems are com-
monly applied in SLR tasks [5]: acoustic systems and
phonotactic systems. In acoustic systems, the target language
is modeled with information taken from the spectral charac-
teristics of the audio signal. The acoustic approach known
as Gaussian Mixture Model - Universal Background Model
(GMM-UBM) [6], which makes use of Mel-Frequency
Cepstral Coefficients (MFCC) and Shifted Delta Cepstrum
(SDC) features [7], is the baseline for many other devel-
opments. Currently, most state-of-the-art SLR systems are
based on an approach derived from Joint Factor Analysis,
known as Total Variability Factor Analysis or, more briefly,
i-vector approach[8] [9].

Phone Log-Likelihood Ratios (PLLR) have been recently
introduced as features for language [10] and speaker recogni-
tion systems [11]. These features provide acoustic-phonetic
information in a sequence of frame-level vectors, which
makes them suitable to plug into traditional approaches
based on the widely used MFCC or Perceptual Linear
Prediction (PLP) features.

In a previous work, given the high dimensionality of the
PLLR feature vectors (in contrast with MFCC or PLP rep-
resentations), we started the search of a reduced the Phone
Log-Likelihood Ratio features representation [12]. Several
supervised and unsupervised dimensionality reduction tech-
niques were applied on the phone posterior probability space



by merging or selecting phones. Besides, for comparison
purposes, Principal Component Analysis (PCA) was also
applied on the PLLR space. It was found that the use of PCA
not only reduced the computational costs (by reducing the
size of the feature vector), but also enhanced the performance
of the system.

In this paper, we extend that work by searching for an
optimal compromise between the feature vector size and the
performance of the system. A complete set of experiments is
carried out on the NIST 2007 Language Recognition Eval-
uation (LRE) dataset (which features 14 target languages),
by applying PCA projection into different dimensionalities.
Moreover, we also test the effect of the Shifted-Delta trans-
formation over the reduced PCA-projected PLLR features,
with the purpose of considering larger temporal contexts. As
in the SDC feature based systems [7], the SD-PLLR features
are specified by four parameters N-d-P-k: N is the number
of coefficients from which derivatives are computed at each
frame, d determines the size of analysis windows (consisting
of 2 · d + 1 frames) to compute de derivatives, P is the
shift (number of frames) between two consecutive analysis
windows and k is the number of analysis windows whose
delta coefficients are concatenated to form the final feature
vector. Optimal configuration of SD-PLLRs is found on the
NIST 2007 LRE dataset and then applied to the NIST 2011
LRE dataset (which features 24 target languages).

It must be noted that NIST LREs, held in 1996 and
every two years since 2003, have largely supported the
development of SLR technology [13]. As a result, the
datasets produced and distributed for such evaluations have
become standard benchmarks to prove the usefulness of
new approaches. These datasets consist of two types of
signals: (1) narrow band, 8 kHz Conversational Telephone
Speech (CTS) (NIST LRE 1996-2007); and (2) Narrow-Band
Broadcast Speech (telephone calls included in broadcasts)
coming from Voice of America (VOA) radio broadcasts
(NIST 2009 LRE and 2011 LRE).

The rest of the paper is organized as follows. Section II
gives details about the Phone Log-Likelihood Ratio extrac-
tion procedure. Section III describes the systems developed
for this work: feature extraction, modeling and scoring.
Section IV provides details about the experimental setup,
the datasets and the evaluation measures. Section V presents
the results achieved by using PCA-projected PLLR features
and studies the gains achieved by optimizing the SD trans-
formation. Finally, conclusions are given in Section VI.

II. PLLR FEATURES

To compute the PLLRs, let us consider a phone decoder
including N phone units, each of them represented typically
by means of a model of S states. Given an input sequence
of acoustic observations X , we assume that the acoustic
posterior probability of each state s (1 ≤ s ≤ S) of each
phone model i (1 ≤ i ≤ N) at each frame t, p(i|s, t), is
output as side information by the phone decoder. Then, the
acoustic posterior probability of a phone unit i at each frame
t can be computed by adding the posteriors of its states:

p(i|t) =
∑
∀s

p(i|t, s) (1)

Assuming a classification task with flat priors, the log-
likelihood ratios at each frame t can be computed from
posterior probabilities as follows:

LLR(i|t) = log
p(i|t)

1
(N−1) (1− p(i|t))

i = 1, ..., N (2)

The resulting N log-likelihood ratios per frame are the
PLLR features considered in our approach. Free software to
compute them can be found in [14].

III. I-VECTOR SYSTEM

Under the i-vector modeling assumption, an utterance
GMM supervector (stacking the means of a GMM which
is estimated by MAP adaptation of the UBM to the input
utterance) is defined as:

M = m+ Tw (3)

where M is the utterance dependent GMM mean supervec-
tor, m is the utterance independent mean supervector, T is
the so called total variability matrix (a low-rank rectangular
matrix) and w is the so called i-vector (a normally distributed
low-dimensional latent vector). That is, M is assumed to be
normally distributed with mean m and covariance TT t. The
latent vector w can be estimated from its posterior distribu-
tion conditioned to the Baum-Welch statistics extracted from
the utterance and using the UBM. The i-vector approach
maps high-dimensional input data (the GMM supervector) to
a low-dimensional feature vector, hypothetically maintaining
most of the relevant information [8] [9].

IV. EXPERIMENTAL SETUP

IV-A. System Configuration

The open software Temporal Patterns Neural Network
(TRAPs/NN) phone decoder , developed by the Brno Uni-
versity of Technology (BUT) for Hungarian (HU) was used
as a first step to compute the PLLR features. This decoder
is trained on the Hungarian SpeechDat(E) Database (8kHz),
containing 10 hours of speech from 1000 Hungarian speakers
(511 males, 489 females), recorded over the Hungarian fixed
telephone network.

The BUT decoder takes into account three non-phonetic
units: int (intermittent noise), pau (short pause) and spk
(non-speech speaker noise) along with 58 phonetic units.
For each unit, a three-state model is used, so three posterior
probabilities per frame are calculated.

The BUT decoders produce a sequence of numbers
representing the posterior probabilities pti,s for each one of



the three states s of each phone i at each frame t, encoded
in the following way:

xi,s(t) =
√
−2 log pi,s(t) (4)

Thus, the posterior probability pti,s can be obtained as
follows:

pi,s(t) = e−
(xi,s(t))2

2 (5)

Before computing log-likelihood ratios, we integrate the
non-phonetic units int, pau and spk into a single 9-state
model. Then, a single posterior probability is computed
for each unit i (1 ≤ i ≤ N), by adding the posterior
probabilities of all the states in the corresponding model
(Equation 1). Finally the log-likelihood ratio for each unit
is computed according to Equation 2. In this manner we get
59 log-likelihood ratios at each frame t. This feature vectors
are augmented with first order dynamic coefficients [10].

Voice activity detection is performed by removing the
feature vectors whose highest PLLR value correspond to the
non-phonetic unit feature.

For the i-vector system, a gender independent 1024-
mixture UBM is estimated by the Maximum Likelihood cri-
terion on the training dataset, using binary mixture splitting,
orphan mixture discarding and variance flooring. The total
variability matrix T is estimated as in [15], but using only
data from target languages, according to [9].

A generative modeling approach is applied in the i-
vector feature space [9], the distribution of i-vectors of each
language being modeled by a single Gaussian distribution.
Thus, the i-vector scores are computed as follows:

score(f, l) = N(wf ;µl,Σ) (6)

where wf is the i-vector for target signal f , µl is the mean
i-vector for language l and Σ is a common (shared by all
languages) within-class covariance matrix.

IV-B. Datasets

NIST 2007 LRE

The NIST 2007 LRE [16] defined a spoken language
recognition task for conversational speech across telephone
channels, involving 14 target languages. In this work, NIST
2007 LRE dataset is used for development purposes (for
tuning system parameters) because, although being smaller
than the ones used in later evaluations, it is diverse and
representative enough to make consistent decisions.

Training and development data used in this work were
limited to those distributed by NIST to all 2007 LRE
participants: (1) the Call-Friend Corpus; (2) the OHSU
Corpus provided by NIST for the 2005 LRE; and (3) the
development corpus provided by NIST for the 2007 LRE.
A set of 23 languages/dialects was defined for training,
including target and non-target1 languages. For development

1French was the only non-target language used for NIST 2007 LRE.

purposes, 10 conversations per language were randomly
selected, and the remaining conversations (amounting to
around 968 hours) were used for training. Development
conversations were further divided into 30-second speech
segments. The total number of 30-second segments was
3073. Results reported in this paper have been computed
on the subset of 30-second speech segments of the test set
for the closed-set condition (2158 segments), which was the
primary task in the NIST 2007 LRE.

NIST 2011 LRE

The NIST 2011 LRE [17] involved a pairwise language
detection task with 24 target languages, 9 of which had been
never used as target languages in previous NIST evalua-
tions. Development data specifically collected for these 9
languages, including 100 30-second segments per language,
were randomly split into approximately two half disjoint
subsets: the first half was used to train specific models for
the new languages, and the second half was used to estimate
backend and fusion parameters.

To train more robust models for the target languages,
we added data from different sources. A set of 66 lan-
guages/dialects was defined for training [18]. Each of them
was mapped either to a target language or to non-target
languages2. The whole training dataset for the NIST 2011
LRE benchmark amounts to 1953 hours.

For development purposes, the second half of the audited
segments provided for new target languages, along with the
NIST 2007 and 2009 evaluation datasets, and 30-second
signals used for development in 2007 and 2009 [10] were
used. The whole development dataset consists of 13663
segments.

The NIST 2011 LRE is the largest and most challenging
evaluation of SLR systems carried out up to date, making it
a good choice for benchmarking SLR technology.

IV-C. Evaluation measures

In this work, systems are compared in terms of: (1)
the average cost performance Cavg as defined in NIST
evaluations up to 2009, (2) the Log-Likelihood Ratio Cost
CLLR [19]; and (3) the primary measure C24

avg used to
evaluate system performance in the NIST 2011 LRE [17],
which first computes pairwise minimum and actual costs for
all pairs of target languages, and then averages the actual
cost for the 24 pairs with the highest minimum cost.

Performances reported in this paper have been computed
on the 30-second closed-set condition of the test sets (pri-
mary evaluation tasks).

2 The set of non-target languages defined for the NIST 2011 LRE
includes: French, German, Japanese, Korean and Vietnamese from CTS
recordings, and Albanian, Amharic, Creole, French, Georgian, Greek,
Hausa, Indonesian, Kinyarwanda/Kirundi, Korean, Ndebele, Oromo, Shona,
Somali, Swahili, Tibetan and Tigrigna from VOA broadcasts.
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Fig. 2. Cavg and 10×CLLR performance for the PLLR-based baseline system (with feature dimensionality=59) and systems trained on
the set of PLLR features obtained after PCA projection into different dimensionalities, on the NIST 2007 LRE primary task

V. RESULTS

V-A. Complete study on the NIST 2007 LRE dataset

Principal Component Analysis

Results in [12] showed that PCA applied on the PLLR
feature space could enhance the performance of an i-vector
system. Therefore, the first set of experiments carried o
int his work aims to find the optimal dimensionality to
which the PLLR set could be reduced. Besides, this set
of experiments also aims to search for the point where
degradation would start harming system performance. Figure
2 shows the CLLR and Cavg values for several systems
trained on PLLR features after being projected by means
of PCA to different dimensionalities.

The baseline system (without PCA) achieves 2.86 Cavg

and 0.390 CLLR. Note that performance is significantly
enhanced even by simply PCA projecting the features into
the same dimensionality, that is, without performing dimen-
sionality reduction. This could be due to the whitening of
the data obtained by means of PCA, that decorrelates the
feature space, adapting it to the diagonal covariance GMMs
that are used to model the data.

It can be seen that performance does not degrade signifi-
cantly for a wide range of PCA projection dimensionalities.
Four main ranges could be identified. The first one would be
between 59 and 47. The second, in which best results can
be found, ranges between 47 and 27, finding that 33 is the
optimal dimensionality to which this set of features could be
reduced, achieving 2.11 Cavg and 0.283 CLLR. After that,
between 27 and 15, a small degradation seems to affect the
system. Finally, for values below 15 (at which 2.23 Cavg and
0.330 CLLR is achieved) performance degrades markedly,
revealing a significant loss in the information retrieved by
the system.

Shifted Delta PLLR features

The second set of experiments focuses on checking
whether the application of a Shifted-Delta transformation
could provide information when applied over the PLLR
features. To avoid unmanageable high dimensionality SD-
PLLR feature sets, we started from PCA-projected PLLRs
of the smallest dimension that didn’t harm seriously system
performance.

Table I. SLR performance of an i-vector system based on
SD-PLLR features using different N values on the NIST
2007 LRE 30s test set.

PCA Dim Cavg CLLR

PLLR 2.59 0.37013 SD- PLLR 13-2-3-7 1.71 0.260
PLLR 2.23 0.33015 SD- PLLR 15-2-3-7 1.94 0.264
PLLR 2.29 0.33217 SD- PLLR 17-2-3-7 1.73 0.241

As explained in Section I, the SD-PLLR features are
specified by four parameters N − d − P − k. First, we
optimized the number of coefficients from which derivatives
are computed at each frame, N the other three parameters
being set to common values in traditional MFCC acoustic
systems (d = 2, P = 3 and k = 7). Given that 15 was the
lowest dimension found without significant degradation, the
SD-PLLR representation was tested for values around that
dimensionality (13, 15 and 17). Table I shows a significant
improvement over the PCA-projected PLLR set used as
baseline. Best results on this dataset are achieved using the
13-2-3-7 configuration.

Given the improvement achieved by means of SD-
PLLRs, SD configurations were further explored, by trying
different values of the shift P . Results in Table II show a
significant sensitivity to this parameter. again, the 13-2-3-7



Table II. SLR performance of an i-vector system based on
SD-PLLR features, using different P values, on the NIST
2007 LRE 30s test set.

SD-PLLR configuration Cavg CLLR

13-2-1-7 2.39 0.346
13-2-2-7 1.91 0.279
13-2-3-7 1.71 0.260
13-2-4-7 2.02 0.297
13-2-5-7 2.46 0.347

configuration was found to be optimal.

Table III. SLR performance of an i-vector system based on
SD-PLLR features, using different d values, on the NIST
2007 LRE 30s test set.

SD-PLLR configuration Cavg CLLR

13-1-3-7 2.04 0.286
13-2-3-7 1.71 0.260
13-3-3-7 2.03 0.277

Finally, the parameter d was also optimized, by consid-
ering values around the baseline d = 2. As shown in Table
III, neither d = 1 nor d = 3 outperform d = 2, so the
configuration 13-2-3-7 was considered optimal on the NIST
2007 LRE dataset.

V-B. Performance on the NIST 2011 LRE dataset

The optimal configuration of SD-PLLRs found on NIST
2007 LRE (13-2-3-7) was then applied on the NIST 2011
LRE dataset, with the purpose of checking the suitability
of this choice on an independent test set. Table IV presents
results for two PLLR-based systems on the NIST 2011LRE
benchmark. The relative improvement achieved when using
the PLLR features reduced by means of PCA and expanded
to larger temporal contexts by means of SD computation was
of 21% in terms of Cavg with regard to the baseline (without
PCA) system.

Table IV. SLR performance of i-vector systems based on
PLLR baseline and SD-PLLR features, on the NIST 2011
LRE 30s test set.

System Cavg CLLR %C24
avg

Baseline 5.18 0.982 12.12
SD-PLLR 13-2-3-7 4.10 0.826 10.48

VI. CONCLUSIONS

In this work, we have explored the improvements in SLR
performance that could be achieved by PCA projection of
the PLLR features into different dimensionalities. The study,
developed on the NIST 2007 and 2011 LRE benchmarks,
reveals that the features can be projected into a wide range of
dimensionalities, enhancing the performance of the system,
due in part to the decorrelation of the feature space achieved

by applying Principal Component Analysis. For the Hungar-
ian BUT decoder used in this work, best results are achieved
by projecting PLLRs into 33 dimensions, where the system
attained a 26% relative improvement in terms of Cavg with
regard to the baseline system.

On the other hand, the application of Shifted-Delta
over the PCA-projected set of PLLR features, proved to
be effective, reaching 1.73 Cavg and 4.10 Cavg, for the
NIST 2007 and 2011 LRE datasets, which means 40% and
21% relative improvements with regard to using the PLLR
features, respectively.
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[19] N. Brümmer and J. du Preez, “Application-Independent
Evaluation of Speaker Detection,” Computer, Speech
and Language, vol. 20, no. 2-3, pp. 230–275, 2006.


