Optimizing PLLR features for Spoken Language Recognition

M. Diez, A. Varona, M. Penagarikano, L.J. Rodriguez-Fuentes, G. Bordel GTTS, Department of Electricity and Electronics, University of the Basque Country UPV/EHU, Spain

Abstract

Phone Log-Likelihood Ratios (PLLRs): recently introduced features for spoken language and speaker recognition systems

Effective way of retrieving acoustic-phonotactic information into framelevel vectors

In this work:

- •Extend the search of reduced representations of PLLRs
- Evaluate the effect of using larger temporal contexts: Shifted Delta transformation is applied on reduced sets of PCA-projected PLLRs


PLLR Features

- \square Phone decoder: N phone units, S states per model
- $\ \square \ p(i|s,t)$ Acoustic posterior probability of each state $s\ (1\leq s\leq S)$ of each phone model $i\ (1\leq i\leq N)$ at each frame t, directly provided by the phone decoder
- \square Acoustic posterior probability of a phone unit i at each frame t:

$$p(i|t) = \sum_{\forall s} p(i|s,t)$$

Assuming a classification task with flat priors, and taking the log-likelihood ratios, the obtained distributions are nearly Gaussian:

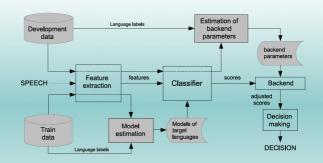
$$LLR(i|t) - \log \frac{p(i|t)}{\frac{1}{(N-1)}(1-p(i|t))} \qquad i-1,...,N \label{eq:lln}$$

- ☐ Brno University of Technology phone decoder for Hungarian (61 phonetic units, each featuring a three-state model). Three non-phonetic units integrated into a single non-phonetic unit: 59 PLLR features computed at each frame
- $\hfill \Box$ Feature vector augmented with first order deltas: 118-dimensional feature vector

Data and evaluation measures

NIST 2007 LRE: conversational speech across telephone channels, 14 target languages.

NIST 2011 LRE: pairwise language detection task, 24 target languages.


Systems compared in terms of:

- (1) The average cost performance C_{avg}
- (2)The Log-Likelihood Ratio Cost $C_{\rm LLR}$
- (3)The primary measure \mathcal{C}^{24}_{avg} for NIST 2011 LRE, which averages the actual cost for the 24 pairs with the highest minimum cost

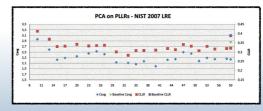
The Task

Spoken language recognition is a pattern recognition task that consists of recognising the language spoken in an utterance by computational means

General structure of a SLR system:

iVector Approach

 $\hfill \Box$ Under the iVector modeling assumption, an utterance GMM supervector (stacking GMM mean vectors) is defined as:

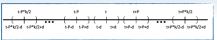

$$M = m + Tw$$

- $\,M\,$ utterance dependent GMM mean supervector
- m utterance independent mean supervector
- T total variability matrix
- w iVector
- $\hfill \square$ The iVector approach maps high-dimensional input data to a low-dimensional feature vector, retaining most of the relevant information

Generative modeling approach is applied in the i-vector features space, the distribution of i-vectors of each language being modeled by a single Gaussian distribution. Scores are computed as follows:

$$score(f, l) = N(w_f; \mu_l, \Sigma)$$

Dimensionality reduction



Baseline system (without PCA): 2.86 $C_{\rm avg}$ 0.390 $C_{\rm LLR}$.

Performance significantly enhanced by PCA projection \rightarrow decorrelation of the feature space

Shifted Deltas on PLLRs

SD-PLLR features are specified by four parameters, N-d-P-k:

Search for the optimal configuration:

PCA Dim		C_{avg}	$C_{\rm LLR}$
13	PLLR	2.59	0.370
13	SD- PLLR 13-2-3-7	1.71	0.260
15	PLLR	2.23	0.330
15	SD- PLLR 15-2-3-7	1.94	0.264
17	PLLR	2.29	0.332
17	SD- PLLR 17-2-3-7	1.73	0.241

SD-PLLR configuration	C_{avg}	$C_{\rm LLR}$
13-2-1-7	2.39	0.346
13-2-2-7	1.91	0.279
13-2-3-7	1.71	0.260
13-2-4-7	2.02	0.297
13-2-5-7	2.46	0.347

SD-PLLR configuration	C_{avg}	$C_{\rm LLR}$
13-1-3-7	2.04	0.286
13-2-3-7	1.71	0.260
13-3-3-7	2.03	0.277

Results on NIST 2011 LRE

System	C_{avg}	$C_{\rm LLR}$	$\%C^{24}_{avg}$
Baseline	5.18	0.982	12.12
SD-PLLR 13-2-3-7	4.10	0.826	10.48

Conclusions

- •Projection of the features enhances performance of the system, due in part to the decorrelation of the feature space achieved by applying PCA
- •Best results are achieved by projecting PLLRs into **33 dimensions**: a 26% relative improvement in terms of C_{avg} w.r.t. the baseline system
- •Shifted-Delta over PCA-projected PLLR features, reaches 1.73 and 4.10 $C_{\rm avg}$ for the NIST 2007 and 2011 LRE datasets, **40% and 21% relative improvements** with regard to using the PLLR features, respectively

