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Abstract

The so called Phone Log-Likelihood Ratio (PLLR) fea-
tures, computed on phone posterior probabilities provided by
phonetic decoders, convey acoustic-phonetic information in a
sequence of frame-level vectors. Thus, PLLRs can be eas-
ily plugged into traditional acoustic systems just by replacing
MFCCs, PLPs or whatever other representation. PLLR features
were used under an iVector-PLDA approach in our submission
to the NIST 2012 Speaker Recognition Evaluation (SRE). In
this work, we present a report of the goodness of these features
for speaker recognition. Results on the telephone clean speech
condition of the NIST 2010 and 2012 SRE show that, although
the system based on PLLR features does not reach state-of-
the-art performance, including it in a fusion with a traditional
acoustic based system (trained on MFCC features) provides re-
markable gains in performance (among the best reported in the
NIST 2012 SRE telephone without added noise condition), re-
vealing a fruitful way of using acoustic-phonetic information
for speaker recognition.

Index Terms:  Speaker Recognition, Phone Log-
Likelihood Ratios, NIST 2012 SRE, iVectors, Probabilistic
Linear Discriminant Analysis

1. Introduction

Speaker Recognition (SR) refers to the task of recognizing a
person given an audio signal containing his/her voice. Exten-
sive overviews of actual feature extraction techniques and mod-
eling approaches for SR can be found in [1] and [2]. Most
SR systems are based on short-term spectral low-level features,
which model vocal-tract properties and the spectral envelope of
the sounds [1]]. Among them, the widely used Mel Filter Cep-
stral Coefficients (MFCC) stand out as one of the most popular.
Others, like Perceptual Linear Prediction Coefficients (PLP) or
Linear Predictive Cepstral Coefficients (LPCC), are also suc-
cessfully applied in several approaches [3]], [4], [S].

Though short-term spectral features seem to be the most
discriminative for SR, many works have explored the use of
different higher-level features which could capture speaker-
specific linguistic and behavioral aspects not reflected at the
spectral level [1]], [2]. For example, voice source features, which
take into account the glottal excitation signal of voiced sounds
[6] or prosodic features which characterize non-segmental as-
pects of speech (syllable stress, intonation patterns, speaking
rate and rhythm) [7]. Other popular high-level approaches are
based on the use of phone/word n-grams obtained from pho-
netic/word decoders [8]]. A variant is proposed in [9]], making
use of phone n-grams obtained from the segments correspond-
ing to the most frequent words. In general, all these studies

found that, though non-spectral features might not be as dis-
criminative as spectral ones, they do provide complementary
information that helps improving system performance when dif-
ferent approaches are fused [10].

Regarding speaker modeling in the SR field, nowadays, the
Total Variability Factor Analysis approach, which extracts low-
dimensional features known as iVectors, has become state-of-
the-art, due to its excellent performance, low complexity and
low dimensionality [[11]] [12]. iVectors are then processed under
different modeling approaches, such as variants of Probabilistic
Discriminant Analysis (PLDA), which stand out as the current
trend for SR systems [13], [[14] outperforming classical cosine-
distance scoring of iVectors with normalization [11]. PLDA
was among the most used techniques in the last NIST 2012 SRE
evaluation [3], [[15].

The iVector PLDA approach was also applied in our sub-
mission (EHU) for the last NIST 2012 SRE evaluation.When
searching for an alternative set of features to the standard
MFCCs, we came to the idea of using Phone Log-Likelihood
Ratios (PLLRs). PLLRs are computed from phone posterior
probabilities provided by phone decoders, conveying high level
phonetic and acoustic short-term information into frame-level
vectors, which allows plugging the features directly into any
short-term spectral feature based system (e.g. iVector-PLDA).
PLLRs had been previously used successfully for Spoken Lan-
guage Recognition with remarkable results [16].

In this paper, we present a report of the utility of PLLR fea-
tures for SR: a detailed description of the PLLR features is given
and sets of experiments carried out on both NIST 2010 and 2012
SREs, on the telephone clean speech conditions, are reported.
PLLR-based systems are compared to (and fused with) state-
of-the-art MFCC-based baseline systems, revealing a comple-
mentarity that enhances significantly system performance.

The rest of the paper is organized as follows: Section [2]de-
fines the PLLR features. Section[3|describes the iVector PLDA
approach used in the SR systems. The experimental setup is
described in section 4] and results are shown and discussed in
Section[3] Finally, conclusions are outlined in Section|[6]

2. PLLR Features
2.1. Definition of PLLR features

Given a phone decoder with a set of N phone units, each of
them represented typically by means of a model of S states,
we assume that the acoustic posterior probability of each state s
(1 < s < 5) of each phone model 7 (1 < ¢ < N) at each frame
t, p(ils, t), is directly provided by the phone decoder. Then, the
acoustic posterior probability of a phone unit ¢ at each frame ¢
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Figure 1: Distributions of frame-level posteriors (first row),
phone log-posteriors (second row) and phone log-likelihood ra-
tios (third row) for three Hungarian phones (A:, E and e:).

can be computed by adding the posteriors of its states:
p(ilt) = p(ils,t) )
Vs

The phone posteriors computed according to Eq. [T] exhibit
extremely skewed and sparse (non-Gaussian) distributions (see
Figure |1} first row). This is not suitable for the kind of mod-
els we apply in SLR systems, since they typically assume that
features are Gaussian-distributed. To address the non-Gaussian
nature of phone posteriors, we can transform them into log-
posteriors, obtaining more suitable but still non-Gaussian dis-
tributions (see Figure[T} second row). If we go further and take
the logarithm of the likelihood ratio, the obtained distributions
are nearly Gaussian (see Figurem third row):

LLR(ilt) = log — p(lt)

R <\ L7 A— i=1,..N (2)
o —ple)

In this way, we obtain an N-dimensional feature vector per
frame ¢, carrying the same information as the /N phone posteri-
ors, but featuring approximately Gaussian distributions. These
are the Phone Log-Likelihood Ratio (PLLR) features used in
this work.

2.2. Why PLLRs may be suitable for Speaker Recognition

Speech sounds are produced in a different way by each speaker.
A phone decoder can be seen as a reference system for repre-
senting the speech sounds of any speaker in terms of the acti-
vation of its phonetic units. This seemingly simple represen-
tation involves a complex model, since each phonetic unit gets
activated for specific sequences of spectral features, which in-
clude both static and dynamic information. Some units could
be strongly correlated among each other, so they would get ac-
tivated at the same time (e.g. all the nasal consonants would ac-
tivate when a nasal sound appeared in the input), but each pho-
netic unit would also provide specific information that would
help catching the subtle differences between sounds uttered by
each speaker. In fact, the goodness of this representation de-
pends on the richness of the inventory of phonetic units (i.e.

how well they cover the sounds of each speaker) and the op-
timality of the classification/mixing process (i.e. how well the
phone decoder estimates the activation of phonetic units that
best represents any sound). On the other hand, since the phone
decoder is trained on a large and diverse dataset, the PLLR fea-
tures are expected to be robust to channel and other sources of
variability.

In summary, PLLRs may be seen just as an alternative way
of representing speech sounds, including the subtle differences
in the realization of sounds among speakers, which makes them
suitable for SR.

3. The iVector PLDA Approach

Under the i-Vector modeling assumption, an utterance GMM
supervector (stacking GMM mean vectors) is defined as
[LIh12]:

M=m+Tw 3)

where M is the utterance dependent GMM mean supervector,
m is the utterance independent mean supervector, 7" is the to-
tal variability matrix (a low-rank rectangular matrix) and w is
the so called i-Vector (a normally distributed low-dimensional
latent vector). That is, M is assumed to be normally distributed
with mean m and covariance T'T"*. The latent vector w can
be estimated from its posterior distribution conditioned to the
Baum-Welch statistics extracted from the utterance with regard
to a background GMM (Universal Background Model, UBM).
The i-Vector approach maps high-dimensional input data (a
GMM supervector) to a low-dimensional feature vector (an i-
Vector), hypothetically retaining most of the relevant informa-
tion.

Under the Gaussian PLDA approach, an observation j (in
this case, an iVector) of speaker i, is supposed to be modeled
by:

wij = Vy + Uz + zij 4)
with:
yi  ~N(0,I) )]
zij  ~N(0,I) (6)
zij ~N( ,Dfl) @)

where D is a diagonal precision matrix and the hidden variables
y; and x;; are the speaker and channel factors, respectively [17],
while z;; is the noise term accounting for the rest of the vari-
ability. The model M = (V, U, D) is estimated by EM.

4. Experimental setup
4.1. MFCC Feature Extraction

MEFCC features were computed in frames of 25 ms at intervals
of 10 ms, by means of the Sautrela toolkit [18]. The MFCC
set comprised 13 coefficients, including the zero (energy) co-
efficient. Cepstral Mean Subtraction (CMS) [19] and Feature
Warping [20]] were applied to cepstral coefficients. An energy
based VAD was applied, which removed frames with energies
more than 30db below the maximum. Finally, the feature vector
was augmented with dynamic coefficients (13 first-order and 13
second-order deltas), resulting in a 39-dimensional feature vec-
tor.



4.2. PLLR Feature Extraction

In this work, the open software Temporal Patterns Neural Net-
work (TRAPs/NN) phone decoder for Hungarian, developed
by the Brno University of Technology (BUT) [21], has been
applied to compute PLLRs. The BUT decoder for Hungarian
includes 61 phonetic units, each featuring a three-state model,
which means that three posterior probabilities per unit are com-
puted at each frame, encoded in the following way:

I(Z|57t) = _QIng(“Sat) (8)

Thus, the posterior probability p(i|s, t) can be obtained as
follows:
) _ (x(i]s,t)?
p(ils,t) =e” 2 ©

Before computing log-likelihood ratios, the three non-
phonetic units of the BUT decoder for Hungarian: int (inter-
mittent noise), pau (short pause) and spk (non-speech speaker
noise), are integrated into a single non-phonetic unit model.
Then, a single posterior probability is computed for each phone
model i (1 < ¢ < N), by adding the posterior probabilities
of all the states in the corresponding model (Equation [T). Fi-
nally, log-likelihood ratios are computed according to Equation
[2 In this way, 59 PLLR features are computed at each frame
t. The feature vector is then augmented with first order deltas
[16], resulting in a 118-dimensional feature vector.

Voice activity detection is performed by removing the fea-
ture vectors whose highest PLLR value correspond to the inte-
grated non-phonetic unit.

4.3. iVector PLDA Configuration
4.3.1. Preprocessing

The Qualcomm-ICSI-OGI (QIO)[22]] noise reduction technique
(based on Wiener filtering) was independently applied to the
audio streams. The full audio stream was taken as input to es-
timate noise characteristics, thus avoiding the use of voice ac-
tivity detectors on which most systems rely to constrain noise
estimation to non-voice fragments.

4.3.2. UBM

For each system, two gender dependent UBMs (the same for
NIST 2010 and 2012 experiments), each consisting of 1024
mixture components, were estimated on the dataset used for the
EHU NIST 2010 SRE submission (a subset of SRE04, SRE05
and SREOQ6 consisting of 4882 signals) [23]], using the Sautrela
toolkit.

4.3.3. iVector Extractor

Gender dependent Total Variability matrices were estimated for
each system on each training set (for NIST 2010 and 2012
SRE), by means of Sautrela. According to experiments on NIST
2010 SRE data, the i-Vector dimensionality was fixed to 500.

For the NIST 2010 SRE, the Total Variability Matrix was
trained on a subset of signals from SRE04 and SREQ6, that
amounted to 8.117 signals. In the case of NIST 2012 SRE, the
single_file_per_ldc_id_map list was used for training the iVec-
tor total variability matrix. Note that speech signals are not
repeated in that list. Additionally, 590 channel-balanced ran-
domly chosen signals from the Follow-Up set were also used for
training, in order to increase the number of microphone-channel
signals in the training set. This training set consisted of 21.176
signals.

4.3.4. Gaussian PLDA

Gender dependent Gaussian PLDA systems [17] were estimated
on the training sets of NIST 2010 and 2012 SRE. PLDA systems
were estimated using a speaker subspace of size 150, a channel
subspace of size 400 and 20 Expectation-Maximization (EM)
iterations.

The PLDA systems for NIST 2010 SRE were trained on a
subset of signals obtained from SRE04, SRE06 and SREOS plus
Follow up signals, which amounted to 23.302 signals. For NIST
2012 SRE, the PLDA systems were trained on the same set of
signals as the Total Variability matrix (see Section[4.3.3)

4.3.5. LLR Estimation

PLDA system scores s(t,u) were used as log-likelihoods. For
NIST 2012 SRE, the likelihood of a test utterance w given a
speaker ¢ was computed as the average likelihood of v over all
the training signals ¢ of that speaker, as follows:

pluli) = o 37 et (10)

|T7”(I’LTZ,(Z) | teTrain(i)

Finally, speaker log-likelihood ratios were computed from
speaker log-likelihoods using flat priors (note that the calibra-
tion does the offset correction to the flat prior).

4.4. Fusion and Calibration

Calibration and fusion were estimated and applied by means of
the Bosaris toolkit [24]. As for the PLDA estimation, the whole
training set was used to estimate the calibration/fusion param-
eters. To avoid over-optimistic target scores during the cali-
bration/fusion estimation, the self PLDA scores s(u,u) where
excluded from the LLR computation.

For NIST 2010 SRE experiments, the performance on both,
the old (Pyq,=0.01, Cniss=10, Crq=1) and new (Py,=0.001,
Cmiss=1, Cfq=1) operating points was computed. For the
NIST 2012 SRE, the effective prior was set to 0.001.

4.5. Test sets and Evaluation Measures

On the NIST 2010 SRE, experiments were carried out in the
Conversational Telephone Speech in Training and Test condi-
tion. On the NIST 2012 SRE, the Train on Multiple Segments,
Test on Telephone with No Added Noise condition was selected
for experimentation.

Results are shown in terms of Equal Error Rate (EER), Min-
imum Detection Cost Function (MinDCF) and Actual Detec-
tion Cost Function (ActDCF), as defined by NIST for each SRE
[251], [26].

5. Results
5.1. Results on NIST 2010 SRE

Table[T] shows results for the iVector-PLDA systems trained on
MFCC features and PLLR features, and the fusion of both, for
the 2008 and 2010 calibration points. Results show that the
acoustic system clearly outperforms the PLLR based approach,
but the latter gets yet quite good performance compared to those
usually attained by phonotactic systems on SR tasks.

The fusion of both approaches attains 19% and 16% relative
improvements in terms of MinDCF and ActDCF with regard to
the MFCC based approach in the 2008 operating point. Results



Table 1: Results of PLLR and MFCC feature based approaches,
and fusion of them on the NIST 2010 SRE telephone-telephone
speech condition, for the 2008 and 2010 operating points.

| System | Op. point | EER | MinDCF | ActDCF |

2008 439 | 0.199 0210
RAIECLC 2010 442 | 0.606 0.652
2008 780 | 0351 0.359

BEER 2010 775 | 0.763 0.774
Fusi 2008 374 | 0.162 0.176
uston 2010 377 | 0527 0.588

NIST 2010 SRE Converstional Telephone
Speech in Training and Test
T T T T T
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PLLR
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Miss probability (in %)

02
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Figure 2: DET curves for the MFCC and PLLR based sys-
tems, and their fusion on the Conversational Telephone Speech
in Training and Test condition of NIST 2010 SRE

show a miscalibration in the 2010 operating point, yet 13% and
10% relative improvements are attained in terms of MinDCF
and ActDCF with regard to the acoustic approach.

Figure [2] shows the DET curves for the MFCC and PLLR
based systems, and their fusion. Clear performance gains are
observed in all operating points, with regard to the MFCC-based
system, when both approaches are fused.

5.2. Results on NIST 2012 SRE

Results on the SRE 2012 dataset are shown in Table 2l Once
again, the result attained by the acoustic system is better that the
one obtained with the PLLR-based approach (0.296 vs 0.440 in
terms of ActDCF).

However, the fusion of both approaches attains a 23% rela-
tive improvement in terms of MinDCF and a 19% relative im-
provement in terms of ActDCF with regard to the acoustic ap-
proach, which reveals a complementarity between the features.

Figure [3] shows the DET curves for the MFCC and PLLR
based systems, and their fusion, with consistent performance
gains in all operating points when both approaches are fused.

Table 2: Results of PLLR and MFCC feature based approaches,
and fusion of them on the NIST 2012 SRE phone call with no
added noise speech condition.

| System | EER | MinDCF | ActDCF |

MFCC | 1.83 0.277 0.296
PLLR 3.12 0.419 0.440
Fusion 1.39 0.213 0.239

NIST 2012 SRE Train on Multiple Segments,
Test on Telephone with No Added Noise
T T T T T T

MFCC

PLLR
60 - FUSION

Miss probability (in %)

05

02

01 I L
0.01 005 01 02

i
5 1 2 5
False Alarm probability (in %)

Figure 3: DET curves for the MFCC and PLLR based systems,
and their fusion on the Train on Multiple Segments, Test on
Telephone with No Added Noise condition of NIST 2012 SRE

6. Conclusions

In this work, Phone log-Likelihood Ratios have been used as
features for Speaker Recognition tasks under an iVector PLDA
approach. It has been shown that PLLRs can be easily plugged
into short-term spectral feature based systems, by simply re-
placing the feature vector. Experiments have revealed that,
though the PLLR-based system does not reach the performance
of the baseline approach (relying on MFCC features under the
same iVector-PLDA approach), it does provide significant gains
in performance when both systems are fused: between 10% and
23% relative improvements, in terms in ActDCE, in the phone
call clean speech core conditions of the NIST 2010 and 2012
SRE.

PLLR features, which convey acoustic and phonetic infor-
mation in a short-term frame-level vector, provide a new and
successful way of using high-level phonetic information for SR
tasks.

7. Acknowledgments

This work has been supported by the University of the Basque
Country, under grant GIU10/18 and project US11/06; and
by the Government of the Basque Country, under program
SAIOTEK (project S-PE12UNOS55); Mireia Diez is supported
by a 4-year research fellowship from the Department of Educa-
tion, University and Research of the Basque Country.



(1]

2

—

(3]

(4]

(3]

(6]

(7]

(8]

[9

—

[10]

(11]

[12]

[13]

[14]

8. References

T. Kinnunen and H. Li, “An overview of text-independent
speaker recognition: From features to supervectors,’
Speech Communication, vol. 52, no. 1, pp. 12 — 40, 2010.

Q. Jin and T. F. Zheng, “Overview of front-end features
for robust speaker recognition,” in Proc. APSIPA, 2011.

N. Brummer, L. Burget, C. S, O. Glembek, J. A,
M. Karafiat, K. P., P. Matejka, O. P,, P. O., S. J., S. M.,
S. T., and A. Swart, “ABC System description for NIST
SRE 2012,” in 2012 NIST Speaker Recognition Evaluation
(SRE) Workshop, Orlando, USA, 11-12 December 2012.

W. M. Campbell, J. P. Campbell, D. A. Reynolds,
E. Singer, and P. A. Torres-carrasquillo, “Support vector
machines for speaker and language recognition,” Com-
puter Speech and Language, vol. 20, pp. 210-229, 2006.

T. Kinnunen, V. Hautamaki, and P. Franti, “Fusion of
spectral feature sets for accurate speaker identification,”
in SPECOM, St. Petersburg, Russia, September, 2004, pp.
361-365.

J. Gudnason and M. Brookes, “Voice source cepstrum co-
efficients for speaker identification,” in /CASSP, 2008, pp.
4821-4824.

M. Kockmann, L. Ferrer, L. Burget, and J. Cernocky,
“ivector fusion of prosodic and cepstral features for
speaker verification,” in INTERSPEECH, 2011, pp. 265—
268.

W. Campbell, J. Campbell, T. Gleason, D. Reynolds, and
W. Shen, “Speaker verification using support vector ma-
chines and high-level features,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 15, no. 7,
pp- 2085-2094, Sept.

H. Lei and N. Mirghafori, “Word-conditioned phone n-
grams for speaker recognition,” in Acoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE Interna-
tional Conference on, vol. 4, April, pp. IV-253-1V-256.

D. Reynolds, W. Andrews, J. Campbell, J. Navratil, B. Pe-
skin, A. Adami, Q. Jin, D. Klusacek, J. Abramson,
R. Mihaescu, J. Godfrey, D. Jones, and B. Xiang, “The
supersid project: exploiting high-level information for
high-accuracy speaker recognition,” in Acoustics, Speech,
and Signal Processing, 2003. Proceedings. (ICASSP ’03).
2003 IEEE International Conference on, vol. 4, April, pp.
IV-784-7 vol 4.

N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and
P. Ouellet, “Front-End Factor Analysis for Speaker Ver-
ification,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 4, pp. 788-798, May 2011.

N. Dehak, P. A. Torres-Carrasquillo, D. A. Reynolds,
and R. Dehak, “Language Recognition via i-vectors and
Dimensionality Reduction,” in Proceedings of the Inter-
speech 2011, Florence, Italy, August 27-31 2011, pp. 857—
860.

S. J. D. Prince and J. H. Elder, “Probabilistic linear dis-
criminant analysis for inferences about identity,” in ICCV,
2007, pp. 1-8.

P. Matejka, O. Glembek, F. Castaldo, M. J. Alam, O. PI-
chot, P. Kenny, L. Burget, and J. Cernocky, “Full-
covariance UBM and heavy-tailed PLDA in i-vector
speaker verification,” in JCASSP, 2011, pp. 4828-4831.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

T. Hasan, S. O. Dasjadi, G. Liu, N. Shokouhi, H. Bo-
ril, and J. H. L. Hansen, “CRSS Systems for 2012
NIST Speaker Recognition Evaluation,” in Proceedings of
ICASSP 2013, Vancouver, Canada, May, 2012.

M. Diez, A. Varona, M. Penagarikano, L. J. Rodriguez-
Fuentes, and G. Bordel, “On the Use of Log-Likelihood
Ratios as Features in Spoken Language Recognition,” in
IEEE Workshop on Spoken Language Technology (SLT
2012), Miami, Florida, USA, December 2012.

N. Brummer, “The EM algorithm and Minimum
Divergence applied to PLDA,” Tech. Rep., 2010. [Online].
Available: https://sites.google.com/site/nikobrummer

M. Penagarikano and G. Bordel, “Sautrela: A Highly
Modular Open Source Speech Recognition Framework,”
in Proceedings of the ASRU Workshop, San Juan, Puerto
Rico, December 2005, pp. 386-391.

B. S. Atal, “Effectiveness of linear prediction character-
istics of the speech wave for automatic speaker identifica-
tion and verification,” Acoustical Society of America Jour-
nal, vol. 55, pp. 1304-1312, 1974.

J. Pelecanos and S. Sridharan, “Feature Warping for Ro-
bust Speaker Verification,” in 2001: A Speaker Odyssey -
The Speaker Recognition Workshop, 2001, pp. 213-218.

P. Schwarz, “Phoneme recognition based on long tem-
poral context,” Ph.D. dissertation, Faculty of Infor-
mation Technology, Brno University of Technology,
http://www fit.vutbr.cz/, Brno, Czech Republic, 2008.

A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl,
H. Hermansky, P. Jain, S. Kajarekar, N. Morgan, and
S. Sivadas, “Qualcomm-ICSI-OGI features for ASR,” in
Proceedings of ICSLP2002, 2002.

M. Penagarikano, A. Varona, M. Diez, L. J. Rodriguez-
Fuentes, and G. Bordel, “University of the Basque Coun-
try System for NIST 2010 Speaker Recognition Eval-
uation,” in 2010 NIST Speaker Recognition Evaluation
(SRE) Workshop, Brno, Czech Republic, 24-25 June 2010.

N. Brummer and E. de Villiers, “The BOSARIS Toolkit
User Guide: Theory, Algorithms and Code for Binary
Classifier Score Processing,” Tech. Rep., 2011. [Online].
Available: https://sites.google.com/site/nikobrummer

The NIST Year 2010 Speaker Recognition Evaluation
Plan. [Online]. Available: |http://www.itl.nist.gov/iad/
mig/tests/spk/2010/index.html

The NIST Year 2012 Speaker Recognition Evaluation
Plan. [Online]. Available: |http://www.nist.gov/itl/iad/
mig/upload/NIST_SRE12_evalplan-v17-r1.pdf


https://sites.google.com/site/nikobrummer
https://sites.google.com/site/nikobrummer
http://www.itl.nist.gov/iad/mig/tests/spk/2010/index.html
http://www.itl.nist.gov/iad/mig/tests/spk/2010/index.html
http://www.nist.gov/itl/iad/mig/upload/NIST_SRE12_evalplan-v17-r1.pdf
http://www.nist.gov/itl/iad/mig/upload/NIST_SRE12_evalplan-v17-r1.pdf

	 Introduction
	 PLLR Features
	 Definition of PLLR features 
	 Why PLLRs may be suitable for Speaker Recognition 

	 The iVector PLDA Approach
	 Experimental setup
	 MFCC Feature Extraction
	 PLLR Feature Extraction
	 iVector PLDA Configuration
	 Preprocessing
	 UBM
	 iVector Extractor
	 Gaussian PLDA
	 LLR Estimation

	 Fusion and Calibration
	 Test sets and Evaluation Measures

	 Results
	 Results on NIST 2010 SRE
	 Results on NIST 2012 SRE

	 Conclusions
	 Acknowledgments
	 References

