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Abstract
Previous works have shown that remarkable perfor-

mance improvements can be attained in speaker and lan-
guage recognition tasks by combining several heteroge-
neous systems that provide complementary information.
In this work, the complementarity of several i-vector lan-
guage recognition systems, using Mel-Frequency Cep-
stral-Coefficient (MFCC) features computed on Short-
Time Fourier Analysis windows of different sizes, is stud-
ied. Language recognition experiments carried out on the
NIST 2007 and 2009 LRE datasets reveal relative per-
formance gains of up to 33% when fusing the systems,
with regard to the best single system. Results suggest
that combining acoustic systems based on analysis win-
dows of different sizes may allow to get advantage from
both the sharper characterization of short events provided
by short windows and the better frequency resolution of
stationary events provided by long windows.

Index Terms: Spoken Language Recognition, Short-
Time Fourier Analysis, i-vectors, Discriminative Score-
Level Fusion.

1. Introduction
The combination of several heterogeneous systems, each
providing complementary information, is known to pro-
vide remarkable performance improvements in verifica-
tion tasks. The combination can be performed at early
processing stages, concatenating the output features of
different front-ends. It can be also performed at an in-
termediate stage, as in [1], where the i-vectors of two dif-
ferent prosodic systems were concatenated and plugged
into a single classifier (in fact, this could be seen as an
early stage combination, if the i-vectors were considered
the output of a complex front-end). Finally, the combi-
nation can be performed at the score level by means of a
discriminative fusion technique, such as Linear Logistic
Regression [2, 3]. For example, in [4], thirteen heteroge-
neous subsystems developed by three different sites were
combined into a single fused system. In [5], six subsys-
tems based on different front-ends were combined to add
robustness to severe noisy conditions.

Many speaker and language recognition systems rely
on acoustic front-ends that extract the useful acoustic in-
formation and transform it into a compact representation.
The well known Mel-Frequency Cepstral-Coefficients
(MFCC) [6] and Perceptual Linear Predictive (PLP) [7]
front-ends are typically applied to describe the quasi-sta-
tionary (slowly time varying) speech signals. Both front-
ends estimate the instantaneous spectrum by means of
short-time spectral analysis performed via the discrete
Fourier Transform (DFT).

The main problem to be addressed when applying a
DFT is leakage, which arises as a consequence of sam-
pling and windowing. This problem is well studied and
many window functions have been proposed to mitigate
the undesired effects depending on the application re-
quirements [8]. In any case, the use of windows that
reduce leakage increases the variance. Some works ad-
dressed this problem too. Welch’s modified periodogram
[9] reduces the variance by time-averaging the spectrum
estimates over multiple frames, but at the expense of
loss in time resolution. The so-called Multi-taper tech-
nique, instead of forming a time-averaged spectrum, av-
erages spectral estimates on a single frame, using a set
of orthogonal window functions (a.k.a. tapers). Recent
works have proven this multi-taper approach to improve
a Speaker Recognition (SR) system [10, 11].

Another important aspect of the application of the
DFT is the trade-off between time and frequency reso-
lution. The choice of the window length (typically from
20 to 30 ms. for speech applications) is a compromise be-
tween the stationarity assumption and the frequency res-
olution defined as the ability to separate the contribution
of two closed frequencies [12]. A wide window (i.e. a
narrowband transform) ensures frequency resolution, but
can violate the stationarity assumption. A narrower win-
dow (i.e. a wideband transform) supports the stationar-
ity assumption but gives poor frequency resolution. In
speech applications, the choice of the window length is a
compromise between the expected set of speech sounds
or phonemes comprising the target language. Vowels and
voiced consonants could be expected to lie on wider sta-



tionary windows compared to other consonants. The se-
lection of a single window length must look for a com-
promise between the requirements of the different units
to cope with, and such a choice could lead to an informa-
tion loss than could be avoided by using and combining
different window sizes. In the case of Language Recog-
nition (LR), where very different languages must be pro-
cessed together, such an information loss could be more
severe than in other applications.

Figure 1: Short-time Fourier analysis poses a trade-off on
time and frequency resolutions. For a given signal (top),
the use of 10ms. segments (middle) provides better time
resolution but poorer frequency resolution than the use of
30 ms segments (bottom).

In this paper, we study the complementarity of differ-
ent window sizes for the short-time Fourier analysis of
speech signals in a state-of-the-art acoustic LR system.
Each front-end (with window sizes ranging from 10 to 30
ms) is plugged into a generative i-vector LR system [13]
and the resulting systems are combined at the score level.

2. Feature Extraction
Frequency spectra were obtained from the 8KHz sig-
nals by applying 256-point DFT to Hamming windowed
frames at a 10 ms frame rate. Mel filtering was thereafter
applied between 300Hz and 3.3KHz to get 20 parameters.

The study was carried out considering five different
window sizes. The standard window size used in Lan-
guage Recognition is 20 ms. Therefore, values around
it were selected for the experiments: 10, 15, 20, 25 and

30 ms. The minimum window size was set according to
the standard window shift. Smaller window sizes would
entail not analyzing part of the signal, thus losing infor-
mation that could be useful.

An energy based VAD was applied, which removed
frames with energies more than 30db below the maxi-
mum.

Figure 2: Diagram of signal windowing using different
lengths from 10ms. to 30ms.

3. Experimental Setup
3.1. Datasets
3.1.1. NIST 2007 LRE

The NIST 2007 LRE [14] defined a spoken language
recognition task for conversational speech across
telephone channels, involving 14 target languages. For
details on dataset distribution and configuration, see [15].

3.1.2. NIST 2009 LRE

The NIST 2009 LRE featured 23 target languages [16],
involving 12 target languages for which Conversational
Telephone Speech (CTS) was available in the NIST 2007
LRE dataset, plus 11 new target languages. For this com-
petition, Broadcast Narrow-Band Speech was provided
consisting mostly of telephone calls included in Voice of
America (VOA) broadcasts. For details on the dataset
partitions used in this work, see [15].

3.2. MFCC-SDC i-vector system

The concatenation of MFCC and Shifted Delta Cepstrum
(SDC) coefficients under a 7-2-3-7 configuration was
used as acoustic representation.

A gender independent 1024-mixture Gaussian Mix-
ture Model (GMM) was used as Universal Background
Model, (UBM), and estimated by Maximum Likelihood
using the training set from each dataset. The total vari-
ability matrix (on which the i-vector approach relies) was
estimated as in [17], using only target languages from the
training sets. A generative modeling approach was ap-



Figure 3: Relative improvements attained by individual and fused systems on the NIST 2007 LRE primary task, taking the individual system that uses 20
ms window as reference.

plied on the i-vector feature space (as in [13]), the set
of i-vectors of each language being modeled by a sin-
gle Gaussian distribution. Thus, the i-vector scores were
computed as follows:

score(f, l) = N(wf ;µl,Σ) (1)

wherewf is the i-vector for target signal f , µl is the mean
i-vector for language l and Σ is a common (shared by all
languages) within-class covariance matrix.

3.3. Backend and fusion

A ZT-norm followed by a discriminative Gaussian back-
end was applied in experiments on both NIST 2007 and
2009 LRE datasets. The FoCal toolkit was used to esti-
mate and apply the backend and calibration/fusion mod-
els [3].

3.4. Evaluation measures

In this work, systems are compared in terms of: (1) the
average cost performance Cavg as defined in NIST evalu-
ations up to 2009; and (2) the Log-Likelihood Ratio Cost
CLLR [3].

3.5. Statistical Significance

To measure the statistical significance of performance
improvements (in terms of Cavg), a series of two-tailed
paired t-tests was carried out [18], which gives an idea of
the variability of performance improvements (and thus,
the robustness of such improvements) across randomly
defined sets of data. To that end, the NIST LRE evalu-
ation datasets were split into 20 language-balanced dis-
joint random subsets. Then, Cavg values were computed
on each subset for the best individual and the best fused
systems (that is, the best pairwise, the best three-way fu-
sion, etc.). Statistical significance tests were carried out
using these performance figures.

4. Results and Discussion
Though no significant differences were found between in-
dividual system performances, the 20 ms system attained
the best result among them. Smaller windows seemed to
have slightly poorer performance.

Table 1: Actual Cavg × 100 and CLLR performance ranges for
the MFCC-SDC-based i-vector systems and different fusions of
them, on the NIST 2007 LRE primary evaluation task.

System: MFCC-SDC i-vector Cavg × 100 CLLR

1 System 2.93 - 3.18 0.414 - 0.444
2 Systems 2.17 - 2.62 0.321 - 0.355
3 Systems 2.04 - 2.22 0.296 - 0.323
4 Systems 1.98 - 2.06 0.288 - 0.300Fusion

5 Systems 1.95 0.284

Table 1 shows performance ranges for individual sys-
tems and fusions of them on the NIST 2007 LRE pri-
mary evaluation task. For individual systems, perfor-
mance ranges between 2.93 and 3.18 Cavg. When pair-
wise fusion is performed, results range from 2.63 Cavg to
2.17 Cavg. The statistical significance of the difference
between the best individual system and the best pairwise
fusion has been proven by performing a t-test. The fu-
sion of three systems still provides a slight improvement,
with the cost decreasing down to 2.04 Cavg. Fusions of
more than three systems don’t provide further significant
improvements.

Figure 3 shows results for the individual systems and
combinations of them on the NIST LRE 2007 primary
task. The graphic reveals the significant relative improve-
ments achieved by fusing systems. Overall, the fusion of
the 5 individual systems attains a remarkable 33% rela-
tive improvement with regard to the best individual sys-
tem, in terms of Cavg.



To further check the surprising complementarity
found in the above reported experiments, a second se-
ries of experiments was carried out on the NIST 2009
LRE database. Table 2 shows performance ranges for
individual systems and fusions of them on this dataset.
Once again, fusions revealed a significant complementar-
ity of systems using different window lengths. As for the
2007 LRE, pairwise fusions provided the most relevant
improvement. In this case, the overall fusion of the sys-
tems reached a 18% relative improvement with regard to
the best individual system in terms of Cavg.

Table 2: Actual Cavg × 100 and CLLR performance ranges for
the MFCC-SDC-based i-vector systems and different fusions of
them, on the NIST 2009 LRE primary evaluation task.

System: MFCC-SDC i-vector Cavg × 100 CLLR

1 System 2.64- 2.69 0.536 - 0.550
2 Systems 2.25 - 2.42 0.478 - 0.498
3 Systems 2.13 - 2.30 0.462 - 0.481
4 Systems 2.14 - 2.23 0.458 - 0.467Fusion

5 Systems 2.17 0.457

4.1. Discussion

The above reported results prompted an inevitable ques-
tion: Where is the complementarity coming from? Al-
though our assumption was that using analysis windows
of different lengths may provide complementary informa-
tion by getting advantage from both, a sharper character-
ization of short events and a better frequency resolution
of stationary events, it was necessary to discard other hy-
potheses.

In particular, the VAD applied in the experiments was
dependent on the selected window length. Computing the
frame energy on windows of different size, may imply fil-
tering different frames in each system. Perhaps the fusion
could be simply adding better information about where
the speech was located, thus enhancing the overall per-
formance.

To confirm or refute this hypothesis and to get a bet-
ter insight on the origin of the attained gains, a new set of
experiments was designed using an external VAD, so that
VAD decisions were independent from the choice of win-
dow length. To that purpose, the open software Temporal
Patterns Neural Network (TRAPs/NN) phone decoder for
Hungarian, developed by the Brno University of Tech-
nology (BUT) [8], was used. VAD was performed by re-
moving the feature vectors whose highest phone posterior
value corresponded to the non-phonetic units (see [19] for
details). Note that to properly use an external VAD, the
analysis windows must be synchronized (centered) with
the VAD flags. Therefore, in this approach some frames
were discarded in each audio at the beginning and ending
of each signal.

Table 3 shows performance ranges for individual sys-
tems and fusions of them on the NIST 2007 and 2009
LRE primary evaluation tasks, using an external VAD.
Even though individual systems attain better performance
than with the energy-based VAD, fusions of two systems
still attain up to 25% and 8% improvements, with regard
to the best individual system in terms ofCavg on the 2007
and 2009 datasets, respectively. The statistical signifi-
cance of this improvement was checked with a t-test (see
section 3.5 for details). Once again, fusions of 3 or more
systems gave just some slight improvements. The over-
all performance gains attained, which reach 30% (2007
LRE) and 12% (2009 LRE), are still significant.

Table 3: Actual Cavg × 100 and CLLR performance ranges for
the MFCC-SDC-based i-vector systems and different fusions of
them, on the NIST 2007 and 2009 LRE primary evaluation task,
using an external VAD.

NIST 2007 LRE
System: MFCC-SDC i-vector Cavg × 100 CLLR

1 System 2.55 - 2.85 0.374 - 0.407
2 Systems 1.90 - 2.29 0.289 - 0.334
3 Systems 1.78 - 2.05 0.272 - 0.304
4 Systems 1.81 - 1.94 0.266 - 0.287Fusion

5 Systems 1.78 0.262

NIST 2009 LRE
System: MFCC-SDC i-vector Cavg × 100 CLLR

1 System 2.49 - 2.80 0.515 - 0.558
2 Systems 2.28 - 2.42 0.473 - 0.489
3 Systems 2.23 - 2.31 0.463 - 0.474
4 Systems 2.20 - 2.25 0.460 - 0.464Fusion

5 Systems 2.19 0.457

5. Conclusions
In this paper, we have presented evidence of the com-
plementarity of short-time Fourier analysis windows of
different lengths. Experiments carried out have revealed
that the fusion of different window-length based systems
leads to significant improvements with regard to individ-
ual system performance in both NIST 2007 and 2009
LRE datasets.

The study suggests that performance gains may come
from the complementarity of the sharper characterization
of events provided by short-time windows and the bet-
ter frequency resolution of stationary events attained with
longer windows.

Future work will involve exploring the early fusion
of features, or the intermediate (i-vector) level fusion of
systems using analysis windows of different sizes.
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