
University of the Basque Country (EHU)
Systems for the NIST 2015 Language

Recognition Evaluation

Mireia Diez, Mikel Penagarikano, Amparo Varona,
Luis J. Rodríguez-Fuentes, Germán Bordel

GTTS (http://gtts.ehu.es), Department of Electricity and Electronics
University of the Basque Country UPV/EHU, 48940, Leioa, Spain

e-mail: mireia.diez@ehu.es

1 Introduction
This paper briefly describes the language recognition systems developed by the
Software Technology Working Group (http://gtts.ehu.es) of the University of
the Basque Country (EHU) for the NIST 2015 Language Recognition Evalu-
ation. The submitted systems follow the Total Variability Factor Analysis (i-
Vector) approach. The systems use either Mel-Frequency Cepstral Coefficients
(MFCC) or Phone Log-Likelihood Ratio (PLLR) as features [1]. Different mod-
elings and scorings were applied on top of the ivectors, and several combinations
of them were fused for the final submissions.

2 Dataset partition
First, Speech Activity Detection (SAD) was applied to all the signals provided
for system development in the NIST 2015 LRE. Signals were then cut into 30-
second segments. The resulting set of segments was partitioned into training,
development and test subsets, according to the following criteria:

• For languages with more than 800 30s segments, 150 segments were chosen
for development and 150 segments for test, the remaining ones being used
for training.

• For languages containing between 300 and 800 30s segments, 150 segments
were chosen for development and the remaining ones were used for train-
ing. Note that these languages didn’t contribute data to the test subset.

This work has been supported by the University of the Basque Country UPV/EHU, under
grant GIU13/28.

1

• The remaining languages were handled as follows: in the case of zho-yue,
100 segments were chosen for development and the remaining ones were
used for training; in the case of eng-gbr and por-brz, 30 segments were
chosen for development (in each case) and the remaining ones were used
for training.

In all cases, segments extracted from a given signal were all allocated to the
same set (either training, development or test). Therefore, the numbers shown
above denote the minimum number of segments posted for development and
test (actual numbers are slightly higher). Finally, the development and test sets
were balanced according to the nature of the speech whenever CTS and BN
training data were available for a language.

3 i-vector Extraction

3.1 PLLR features
Phone Posterior Extraction

Kaldi [2] was used to train a NNet-based acoustic model. Training was only
based on LDC97S62 (Switchboard-1 Release 2) and NIST provided Mississippi
State University transcripts. The NNet model was used to extract frame-level
phone posteriors from audio signals.

PLLR computation

Given a phone decoder that outputs anN -dimensional vector of phone posteriors
at each frame: p = (p1, p2, . . . , pN), such that

∑N
i=1 pi = 1 and pi ∈ [0, 1] for

i = 1, 2, . . . , N , PLLRs are computed as follows:

ri = logit(pi) = log
pi

(1− pi)
i = 1, ..., N (1)

Besides phonetic units, the phone decoder provides special non-phonetic
units representing silence, noises and other non-linguistic events. These units
were integrated into a single non-phonetic unit. The PLLR systems developed
in this work performed SAD by removing the feature vectors whose highest
PLLR value was obtained for the integrated non-phonetic unit.

3.2 MFCC Features
The concatenation of MFCC and Shifted Delta Cepstrum coefficients under
a 7-2-3-7 configuration was used as acoustic representation in MFCC-iVector
systems. SAD was performed by removing the feature vectors whose highest
PLLR value was obtained for the integrated non-phonetic unit, using the Brno
University of Technology decoder for Hungarian [3], as done in [4].

2

3.3 i-vector configuration
For each set of features (PLLRs and MFCCs), a gender independent 1024-
mixture GMMwas used as UBM, and estimated by Maximum Likelihood using a
partition of the LDC English data. The total variability matrix T was estimated
as in [5], using the training set defined in Section 2. The i-vector dimensionality
was set to 500.

4 Classifiers

4.1 Generative Gaussian (G)
In the generative multiclass Gaussian classiffier, the distribution of language
ivectors is modeled by a multivariate normal distribution N (µl,Σ) for each
target language l ∈ L, where the full covariance matrix Σ is shared across
all target languages. Maximum Likelihood (ML) estimates of the language
dependent means µl and the covariance matrix Σ are computed. For each
target language l, the i-vector scores are given by:

score(f, l) = log(N(xf ;µl,Σ)) (2)

where xf is the feature vector (i-vector) for target signal f . The score vector

sf = [score(f, 1), . . . , score(f, L)] (3)

can be obtained by:
sf = Axf + b + cf (4)

where the rows of A are:
al = µTl Σ−1 (5)

and the elements of b and cf are:

bl = −1

2
µTl Σ−1µl (6)

cfl = −K
2

log (2π)− 1

2
log |Σ| − 1

2
xTf Σ−1xf (7)

4.2 Fully Bayesian Generative Gaussian (FBG)
Under the multiclass, fully Bayesian, generative Gaussian classifier paradigm
[6], the distribution of language i-vectors is modeled by a multivariate normal
distribution N (µl,Σ), but instead of using a maximum likelihood estimate of
the model parameters (as in the generative Gaussian classifier), an integration is
made over all possible parameters, according to their proper prior distributions.

3

4.3 Logistic Regression (LR)
In a multiclass logistic regression classifier, the score vector sf corresponding to
an i-vector xf is given by:

sf = Qxf + u (8)

where Q and u are estimated in order to minimize the multi-class cross entropy
[7, 8].

4.4 Neural Network (NN)
A neural network consisting of three hidden layers, each of size 512, with rectifier
activations, was trained using the PDNN toolkit [9]. Dropout factors of 0.4 and
(0.3, 0.2, 0.1) were applied to the input and hidden layers respectively. All the
parameters were heuristically tuned on the development set.

5 Backend and Fusion
The backend is just a classifier applied to the score vector space. It is usually
trained on a development dataset, and it serves as a pre-calibration step of the
system. Two different backends were applied on top of the scores obtained by
the previously presented classifiers:

• Fully Bayesian Generative Gaussian Backend (FBG). It is equiva-
lent to the fully Bayesian generative Gaussian classifier described in Sec-
tion 4.2.

• Discriminative Gaussian Backend (DG). In this case, Maximum
Likelihood estimates of the means and the common covariance matrix are
used initially, but further reestimates of the means are iteratively com-
puted in order to maximize the Maximum Mutual Information (MMI)
criterion:

FMMI (λ) =
∑
∀s

log
pλ (s|ltrue (s))

C∑
∀l pλ (s|l)C p (l)

(9)

where ltrue(s) is the true target language, pλ (s|l) = N (s;µl,Σ) is the
likelihood of the score vector s given the language l, p(l) is the probability
of language l and C is a heuristic factor.

5.1 Fusion
Linear logistic regression fusion parameters were estimated on the development
dataset using the FoCal Toolkit [10].

4

6 LLR computation
Log-Likelihood Ratios (LLR) were computed from the calibrated and fused
scores s = [s1, s2, . . . , sL] as follows:

LLRi = log

 esi

1
Ni−1

∑
j∈Ci
j 6=i

esj

 (10)

where i is the target language, Ci is the cluster where the target language i
belongs to and Ni is the number of languages in Ci.

7 EHU submission
The EHU submission was built on 12 different subsystems, using different com-
binations of features, classifiers and backends:

(1) PLLR - FBG classifier - DG backend

(2) PLLR - FBG classifier - FBG backend

(3) PLLR - LR classifier - DG backend

(4) PLLR - LR classifier - FBG backend

(5) PLLR - NN classifier - DG backend

(6) PLLR - NN classifier - FBG backend

(7) MFCC - FBG classifier - DG backend

(8) MFCC - FBG classifier - FBG backend

(9) MFCC - LR classifier- DG backend

(10) MFCC - LR classifier- FBG backend

(11) MFCC - NN classifier - DG backend

(12) MFCC - NN classifier - FBG backend

The 8 systems submitted by EHU within the established deadline consisted
of different fusions of the subsystems (1-12) listed above. Details are shown in
Table 1.

5

Table 1: Systems submitted by EHU to NIST 2015 LRE. Each system consisted
of the fusion of a different choice of subsystems.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Primary × × × ×
Alternative 1 ×
Alternative 2 × ×
Alternative 3 × ×
Alternative 4 × × ×
Alternative 5 × × × ×
Alternative 6 × × × × ×
Alternative 7 × × × × × ×

8 Processing speed
The processing speed of EHU systems was measured on a dual Xeon E52450
2.16 GHz processor (featuring 16 cores), with 64 GB of RAM. As shown in Table
2, the CPU time required to process the input signals was extremely low. In
particular, the time corresponding to scorings was almost negligible, so it has
been omitted. Note also that the UBM and the Total Variability matrix are
estimated beforehand.

Table 2: CPU time, in terms of Real-Time factors (×RT), for i-Vector systems
based on MFCC and PLLR features.

Features CPU time (×RT)
MFCC 0.001Parameterization
PLLR 0.012
MFCC 0.006UBM
PLLR 0.036
MFCC 0.060

T matrix
PLLR 0.067
MFCC 0.003i-Vector extraction
PLLR 0.004

References
[1] Mireia Diez, Amparo Varona, Mikel Penagarikano, Luis Javier Rodriguez-

Fuentes, and Germán Bordel, “On the Use of Log-Likelihood Ratios as Fea-
tures in Spoken Language Recognition,” in IEEE Workshop on Spoken Language
Technology (SLT 2012), Miami, Florida, USA, December 2012.

6

[2] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely, “The kaldi speech recognition
toolkit,” in IEEE 2011 Workshop on Automatic Speech Recognition and Un-
derstanding. Dec. 2011, IEEE Signal Processing Society, IEEE Catalog No.:
CFP11SRW-USB.

[3] Petr Schwarz, Phoneme recognition based on long temporal context, Ph.D.
thesis, Faculty of Information Technology, Brno University of Technology,
http://www.fit.vutbr.cz/, Brno, Czech Republic, 2008.

[4] Mireia Diez, “Frame-Level Features Conveying Phonetic Information for Lan-
guage and Speaker Recognition,” in PhD Thesis, University of the Basque Coun-
try, Leioa, Spain, September 2015.

[5] N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-End
Factor Analysis for Speaker Verification,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 4, pp. 788–798, May 2011.

[6] N. Brummer, Generative, Fully Bayesian, Gaussian Pattern Classifier,
https://sites.google.com/site/nikobrummer/.

[7] David A Van Leeuwen and N Brummer, “Channel-dependent gmm and multi-
class logistic regression models for language recognition,” in Speaker and Language
Recognition Workshop, 2006. IEEE Odyssey 2006: The. IEEE, 2006, pp. 1–8.

[8] N. Brümmer and J. du Preez, “Application-Independent Evaluation of Speaker
Detection,” Computer, Speech and Language, vol. 20, no. 2-3, pp. 230–275, April-
July 2006.

[9] Yajie Miao, “Kaldi+pdnn: Building dnn-based ASR systems with kaldi and
PDNN,” CoRR, vol. abs/1401.6984, 2014.

[10] FoCal Multi-class: Tools for evaluation, calibration and fusion of, and
decision-making with, multi-class statistical pattern recognition scores,
https://sites.google.com/site/nikobrummer/focalmulticlass.

7

