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Abstract—In acoustic approaches to Spoken Language Recog-
nition (SLR), short-term spectral features such as MFCC-SDC
are commonly used under different modeling techniques, includ-
ing the highly competitive total variability (iVector) approach.
On the other hand, phonotactic SLR systems are built on
segmental-level phone n-gram statistics computed on phone
lattices/sequences produced by phone decoders, some of which
use frame-level phone posterior probabilities as intermediate
features. In this paper, we propose the use of log-likelihood ratios
of frame-level phone posterior probabilities, the so called Phone
Log-Likelihood Ratios (PLLR), as features under an iVector
approach. A PLLR-based iVector system is fully described, evalu-
ated and compared to: (1) an acoustic iVector system (trained on
MFCC-SDC features); and (2) a phonotactic (Phone-lattice-SVM)
system. To evaluate the goodness of the proposal, experiments
on four different benchmarks have been carried out: the NIST
2007, 2009 and 2011 LRE databases (which include narrow
band, mostly single-speaker telephone conversational speech)
and the Albayzin 2010 LRE database (which includes wide-
band, multi-speaker broadcast speech). In these experiments,
the iVector system trained on PLLR features outperformed the
iVector system trained on MFCC-SDC. The fusion of the PLLR-
based iVector system —either with the acoustic iVector system or
with the phonotactic system— provided significant improvements
in all benchmarks, which may indicate that PLLR features
are complementary to both acoustic and phonotactic features.
Finally, the fusion of the three approaches yielded the best or
among the best performances reported so far on the considered
benchmarks1.

Index Terms—Spoken Language Recognition, Phone Posterior
Probabilities, Log-Likelihood Ratios, iVectors

I. INTRODUCTION

SPOKEN Language Recognition (SLR) refers to the task of
recognizing by computational means the language spoken

in an utterance. Two main types of systems are commonly
applied in SLR tasks [1]: low-level acoustic systems and high-
level phonotactic systems. Due to the complementarity of these
approaches, best results are usually obtained by discrimina-
tively fusing several acoustic and phonotactic systems [2] [3].
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1EDICS: Multilingual Recognition and Identification

In low-level acoustic systems, the target language is mod-
eled with information taken from the spectral characteris-
tics of the audio signal. The approach known as Gaussian
Mixture Model / Universal Background Model (GMM-UBM)
was successfully applied to language recognition by using
the concatenation of Mel-Frequency Cepstral Coefficient
(MFCC) and Shifted Delta Cepstrum (SDC) features [4]. In
the following years, besides introducing GMM supervectors
for Support Vector Machine (SVM) classifier [5], acoustic
systems improved due to discriminative GMM training [6]
and acoustic adaptation (CMLLR) [7]. Also, Joint Factor
Analysis (JFA) [8], previously applied to speaker recognition,
was successfully applied to spoken language recognition [9].

Recently, an approach derived from JFA, known as Total
Variability Factor Analysis, for which low-dimensional fea-
tures known as iVectorsare extracted and then processed under
different modeling approaches, has become state-of-the-art in
the speaker and language recognition fields due to its excellent
performance, low complexity and low dimensionality [10] [11]
[12].

New approaches combining the iVector technology with
other complementary features are emerging, as in [13], where
prosodic features (pitch, energy and duration) were introduced,
or in [14], where speaker vectors from subspace GMM were
used as features. It has been reported that these systems alone
do not yield outstanding results, but performance improves
significantl when fusing them with a system based on spectral
features.

Among high-level approaches, nowadays the most common
is the so called Phone-lattice-SVMapproach, which com-
bines phonotactic features (expected counts of phone n-grams
computed on phone lattices provided by phone decoders)
with SVM classifier [15]. Variations of this approach have
been recently proposed leading to improved performance [16]
[17]. Also, remarkable efforts are being devoted to deal with
high-dimensionality representations, by applying either feature
selection [18] or dimensionality reduction [19] techniques.
Recently, high-level phonotactic features (n-gram counts) have
been applied to SLR tasks under an iVector approach [20].

In this paper, we explore the use of frame-level log-
likelihood ratios of phone posterior probabilities produced by a
phone decoder —hereafter called Phone Log-Likelihood Ratios
(PLLR)— as features under an iVector approach. We provide
some insight into PLLR features and discuss why using them
could be useful for characterizing speech sounds in different
languages. We also provide quantitative evidence of the ef-
fectiveness of an iVector system trained on PLLR features.
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The PLLR-based iVector system is compared to and fused
with two acoustic and phonotactic baseline systems, revealing
that PLLR features provide complementary information, since
performance increases significantl in all cases after fusing the
PLLR-based system.

This complementarity can be explained in terms of the
time span of the events implicitly described by each feature
set. The acoustic baseline (an iVector system) is based on
MFCC-SDC features, which convey static and dynamic short-
term spectral information, in contrast to PLLR features, which
convey long-term spectral (i.e. phonetic-level) information. On
the other hand, the phonotactic baseline (a Phone-Lattice-SVM
system) takes expected counts of phone n-grams (conveying
segmental-level information) as features. These features are
typically computed from frame-level phone posteriors, but a
sizeable amount of low-level phonetic information is lost when
phone posteriors are collapsed into few likely sequences of
phones (the phone lattices), on which phone n-gram counts
are computed.

The competitiveness and complementarity of the PLLR-
based iVector system has been experimentally tested on four
challenging benchmarks: the datasets used for the National In-
stitute of Standards and Technology (NIST) Language Recog-
nition Evaluations (LRE) in 2007, 2009 and 2011 (which
include narrow-band, mostly single-speaker conversational
telephone speech) and the Albayzin 2010 LRE dataset (which
includes wide-band multi-speaker broadcast speech).

The rest of the paper is organized as follows. Section II
reviews previous work that motivated the proposed approach.
In Section III, an interpretation of phone posteriors as a
reference system to characterize speech sounds is briefl
discussed and the PLLR features are formally defined Section
IV describes the PLLR-based iVector system along with the
two baseline systems and the backend and fusion models
applied to system scores. Section V describes the datasets
used in the experiments and Section VI formally define
the evaluation measures applied in this work. Section VII
presents a series of experiments carried out to fin the best
configuratio of the PLLR system, using NIST 2007 LRE as
development set. Section VIII presents the results obtained on
the three remaining benchmarks, compares the performance
of the proposed approach to baseline systems, and for a
more complete perspective, provides results reported by other
authors on the same datasets. The contribution and potential
usefulness of PLLR features in the fiel of spoken language
recognition is discussed in Section IX. Finally, conclusions are
given in Section X.

II. MOTIVATION

It is widely accepted that the spectral and phonotactic fea-
tures on which most SLR systems rely provide complementary
information. However, it is not common practice to combine
them into a single feature set, mainly because spectral features
are computed on a frame-by-frame basis, whereas phonotactic
features provide segmental-level information, and thus there is
no clear way to mix them. Most authors build separate acoustic
and phonotactic systems and fuse them at the score level to
get best SLR performance [3] [21] [22] [23].

Previous works aiming to combine acoustic and pho-
netic/phonotactic information in SLR systems have focused
on searching acoustic differences conditioned on the phone
sequence, based on the observation that certain phones are
realized in different ways across languages/dialects.

In [7], acoustic likelihoods computed on dialect-adapted
phone lattices were used to score input utterances in dialect
recognition tasks. During training, dialect-specifi phonetic
models were created by unsupervised MAP adaptation of
dialect-neutral models. During testing, for each input utter-
ance, a single phone lattice was computed using the phone
decoder with dialect-neutral models. This lattice was then
rescored using dialect-adapted phonetic models to generate
dialect-specifi lattices. Finally, these latter were used to
compute the acoustic likelihood of the input utterance for each
dialect. The same idea was further developed in [24], by se-
lecting those biphones that best discriminated between dialects
and training dialect-specifi models for them. This approach
fused well with classic phonotactic systems, probably because
it reflecte acoustic differences between dialects not present
in phone sequences/lattices.

A more recent dialect recognition approach scored the target
dialects based on differences between dialect-specifi acoustic
models corresponding to the same phone type [25]. First, a
phone recognizer was applied to get the most likely phone
sequence and segmentation. Then, a phone-GMM supervector
was estimated for each phone type, based on the feature
vectors aligned to the instances of that phone appearing in
the input utterance. The phonetic characteristics of each input
utterance were thus summarized in a single vector of phone-
type supervectors. Binary SVM classifier were then trained
for each pair of dialects, taking phone-GMM supervectors
as input (thus accounting only for acoustic differences in
the realizations of phones), and applied to estimate posterior
probabilities (used as scores) for each input utterance.

In the approaches reported above, dialect-specifi sets of
acoustic-phonetic models are estimated and a scoring function
is provided that allows to decide what set of models (i.e. what
dialect) better fit an input utterance. In both cases, however,
systems rely on spectral features and can be considered, in
this regard, as acoustic approaches.

Partly inspired by [25], our firs thought was to apply frame-
level phone posteriors as weights in the estimation of phone-
type specifi models, using MFCC-SDC as features. After
realizing that frame-level phone posteriors already conveyed
acoustic-phonetic information, we concluded that they may be
characterizing speech sounds spanning the duration of a phone
and centered at the given frame. This led us to the idea of using
phone posteriors alone as features. Since phone posteriors
are assumed to characterize speech at the phonetic level,
which is between short-term spectral and phonotactic levels,
it was very likely that the proposed approach contributed
complementary information to existing approaches. Finally,
from a practical point of view, frame-level phone posteriors
would just replace spectral features in acoustic SLR systems,
keeping the remaining components exactly the same, which
makes the proposed approach very easy to implement.
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III. USING PHONE POSTERIORS AS FEATURES

In this study, a specifi type of phone decoders is used,
consisting of a set of phonetic models (each featuring a
linear structure of states) and a neural network that provides
estimates of phone state posteriors. The neural network takes
as input a relatively long (around 300 ms) window, consisting
of a sequence of acoustic feature vectors, and outputs the
phone state posteriors. Assuming a frame step of 10 ms, two
consecutive analysis windows will be mostly overlapped and
the sequence of posteriors will thus evolve more smoothly
than spectral features (for which analysis windows are much
shorter, typically 20-30 ms long). Besides, since the neural
network is trained on a large and diverse dataset, the posteriors
are expected to be robust to speaker, channel and other sources
of variability.

Let us consider one of such decoders, with n phonetic units,
each of them represented by a left-right model of S states. At
each frame t, the posterior probability of each state s (1 ≤
s ≤ S) of each phone model i (1 ≤ i ≤ n), pi,s(t), is output,
so that the posterior probability of a phonetic unit i can be
computed by adding the posteriors of its states:

pi(t) =
∑

∀s

pi,s(t) (1)

In this way, the decoder outputs an n-dimensional
vector of phone posteriors at each frame t: p(t) =
(p1(t), p2(t), . . . , pn(t))

′ (the symbol ′ denoting the trans-
pose), such that

∑n

i=1 pi(t) = 1 and pi ∈ [0, 1] for
i = 1, 2, . . . , n. The vector p(t) define a certain mixture
of phones, the one that, according to the neural network
parameters, best describes the spectral content of the analysis
window. Geometrically, the vector of posteriors can be also
interpreted as a point inside an (n − 1)-dimensional region
known as standard (n − 1)-simplex. The standard (n − 1)-
simplex ∆(n−1) is the subset of points in R

n given by:

∆(n−1) = {(x0, . . . , xn−1) ∈ R
n |

n−1
∑

i=0

xi = 1 ∧ xi ≥ 0 ∀i}

(2)
Figure 1 shows the case of a phone decoder with 3 phonetic

units: each analysis window is assigned a point inside the
standard 2-simplex (a triangle). Note that vertices represent
purephonetic units, whereas edges represent different mixtures
of the two phonetic units connected by them.

Under this geometric interpretation, a phone decoder can be
seen as a reference system for representing speech sounds in
any language, its phonetic units playing the role of bases. This
seemingly simple representation involves a complex model,
since each phonetic unit gets activated for specifi sequences
of spectral features, which include both static and dynamic
information. Some units could be strongly correlated among
each other, so they would get activated at the same time
(e.g. all the nasal consonants would activate when a nasal
sound appeared in the input), but each phonetic unit will
also provide specific information that will help catching the
subtle differences between sounds. This specifi nature of
posteriors is expected to provide enough degrees of freedom
to represent speech sounds in different languages. In fact, the

Fig. 1. Standard 2-simplex define by phone posteriors in the case of a
phone decoder with 3 phonetic units.

goodness of this representation will depend on the richness
of the inventory of phonetic units (i.e. how well they cover
the sounds appearing in other languages) and the optimality
of the classification/mixin process (i.e. how well the neural
network estimates the mix of phonetic units to best represent
any sound).

The phone posteriors computed according to Eq. 1 exhibit
extremely skewed and sparse (non-Gaussian) distributions (see
Figure 2, firs row). This is not suitable for the kind of
models we apply in SLR systems, since they typically assume
that features are Gaussian-distributed. To address the non-
Gaussian nature of phone posteriors, we can transform them
into log-posteriors, obtaining more suitable but still non-
Gaussian distributions (see Figure 2, second row). If we go
further and take the logarithm of the likelihood ratio (using
phone posteriors as likelihoods), the obtained distributions are
nearly Gaussian (see Figure 2, third row).

At each frame t, log-likelihood ratios are computed in the
classical way for a binary verificatio task (using fla priors),
as follows:

LLRi(t) = log
pi(t)

1
(n−1)

∑

∀j 6=i pj(t)
i = 1, ..., n (3)

In this way, n log-likelihood ratios are computed at each
frame t, carrying the same information as the n phone posteri-
ors, but featuring approximately Gaussian distributions. These
are the Phone Log-Likelihood Ratio (PLLR) features used in
this work.

IV. SYSTEM CONFIGURATION

A. Baseline MFCC-SDC iVector System

Under the total varibility modeling approach [10], an utter-
ance dependent GMM supervector M (stacking GMM mean
vectors) is decomposed as follows:

M = m+Tw (4)
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Fig. 2. Distributions of frame-level phone likelihoods (lh, f rst row), phone log-likelihoods (llh, second row) and phone log-likelihood ratios (llr, third row)
for 5 phonetic units (A:, E, e:, i, O) of the Brno University of Technology decoder for Hungarian, computed on a subset of the NIST 2007 LRE test set.

where m is the utterance independent mean supervector, T
is the total variability matrix (a low-rank rectangular matrix)
and w is the so called iVector (a normally distributed low-
dimensional latent vector). That is, M is assumed to be
normally distributed with mean m and covariance TT′. The
latent vector w can be estimated from its posterior distribution
conditioned to the Baum-Welch statistics extracted from the ut-
terance and using a Universal Background Model (UBM). The
iVector approach maps high-dimensional input data (a GMM
supervector) to a low-dimensional feature vector (an iVector),
hypothetically maintaining most of the relevant information.

As in previous works [26] [27], the concatenation of MFCC
and SDC coefficient under a 7-2-3-7 configuratio was used
as acoustic representation for the baseline acoustic iVector
system. Voice Activity Detection (VAD) can be performed by
applying a phone decoder to detect and discard non-speech
segments. In [28] [29], the Brno University of Technology
(BUT) phone decoder for Hungarian [30] was successfully
applied as a VAD system. We performed VAD in a similar
way, by removing the feature vectors whose highest PLLR
value corresponded to the non-phonetic unit, using the BUT
phone decoder for Hungarian (see Section IV-C for details on
the computation of PLLRs).

A gender independent 1024-mixture UBM was estimated
by the Maximum Likelihood criterion on the training dataset,
using binary mixture splitting, orphan mixture discarding and
variance flooring The total variability matrix T was estimated
according to the procedure define in [10], but using only data
from target languages, as in [12].

A generative modeling approach was applied in the iVector
feature space [12], the set of iVectors of each language being
modeled by a single Gaussian distribution. Thus, the iVector

scores were computed as follows:

score(f, l) = N (wf ;µl,Σ) (5)

where wf is the iVector for target signal f , µl is the mean
iVector for language l and Σ is a common (shared by all
languages) within-class covariance matrix.

B. Baseline Phonotactic Systems

The three phonotactic systems applied in this work were
developed under the Phone-lattice-SVM approach [31] [19].
Given an input signal, an energy-based voice activity detector
was applied in firs place, which split and removed long-
duration non-speech segments. Then, the open software Tem-
poral Patterns Neural Network (TRAPs/NN) phone decoders,
developed by the Brno University of Technology (BUT) for
Czech (CZ), Hungarian (HU) and Russian (RU) [30] were
applied. The main features of these decoders are:

• Czech decoder - 8 kHz, trained on the Czech Speech-
Dat(E) database, containing 12 hours of speech from
1052 Czech (526 male, 526 female) speakers, recorded
over the Czech fi ed telephone network.

• Hungarian decoder - 8 kHz, trained on the Hungarian
SpeechDat(E) database, containing 10 hours of speech
from 1000 Hungarian (511 male, 489 female) speakers,
recorded over the Hungarian fi ed telephone network.

• Russian decoder - 8 kHz, trained on the Russian
SpeechDat(E) database, containing 18 hours of speech
from 2500 Russian (1242 male, 1258 female) speakers,
recorded over the Russian fi ed telephone network.

Regarding channel compensation, noise reduction, etc. the
three systems relied on the acoustic front-end provided by
BUT decoders.
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BUT decoders were configure to produce phone pos-
teriors that were converted to phone lattices by means of
HTK [32] along with the BUT recipe [30]. Then, expected
counts of phone n-grams were computed using the lattice-tool
of SRILM [33]. Finally, a Support Vector Machine (SVM)
classifie was applied, SVM vectors consisting of expected
frequencies of phone n-grams (up to n = 3), weighted as
in [18]. A sparse representation was used, which involved
only the most frequent features according to a greedy feature
selection algorithm [19]. L2-regularized L1-loss support vector
regression was applied, by means of LIBLINEAR [34].

C. PLLR iVector System

As a firs step to get the PLLR features, the BUT
TRAPs/NN phone decoders for Czech, Hungarian and Russian
[30] were applied. These decoders feature 45, 61 and 52
phonetic units, respectively, each unit being represented by
a three-state model.

For each input utterance, BUT decoders produce a sequence
of numbers xi,s(t) encoding the posterior probabilities pi,s(t),
for each state s of each phone model i at each frame t, in the
following way:

xi,s(t) =
√

−2 log pi,s(t) (6)

Thus, the posterior probability pi,s(t) can be obtained as
follows:

pi,s(t) = e−
(xi,s(t))2

2 (7)

For each decoder, the non-phonetic units int (intermittent
noise), pau (short pause) and spk (non-speech speaker noise)
were integrated into a single non-phonetic unit. Then, accord-
ing to Equation 1, a single posterior probability was computed
for each model i (1 ≤ i ≤ n) by adding the posterior
probabilities of its states. Finally, log-likelihood ratios were
computed according to Equation 3. In this way, PLLR vectors
of size 43 (CZ), 59 (HU) and 50 (RU) were obtained at each
frame t.

Once the PLLR features were computed, the remaining
elements of the iVector system: voice activity detection, GMM,
total variability matrix and iVector scoring, were designed and
applied in the same way as for the acoustic iVector system (see
Section IV-A).

D. Backend Approaches and Setup

The backend serves as a precalibration stage that transforms
the space of scores to get reliable estimates of the true class
probabilities. Besides, when the set of languages for which
models have been trained does not match the set of target
languages, the backend maps the available scores to the space
of target languages. In the case of NIST LRE datasets, separate
models can be trained for different dialects of a target language
or for different data sources (telephone conversational speech,
radio broadcast speech, etc.), and non-target languages can be
modeled as well. Different backends can be applied [26]:

• Generative Gaussian Backend: In a generative Gaussian
backend, the distribution of language scores is modeled
by a multivariate normal distribution N (µt,Σ) for each

target language t, where the full covariance matrix Σ is
shared across all target languages. Maximum Likelihood
(ML) estimates of the means and the covariance matrix
are computed.
Given a score vector s of size K, the output (calibrated)
log-likelihood vector ŝ is obtained by:

ŝ = As+ b+ c (8)

where the rows of A are:

at = µ′
tΣ

−1 (9)

and the elements of b and c are (note that c is a constant
vector):

bt= −
1

2
µ′
tΣ

−1µt (10)

ct= −
K

2
log (2π)−

1

2
log |Σ| −

1

2
s′Σ−1s (11)

• Discriminative Gaussian Backend: In this case, ML esti-
mates of the means and the common covariance matrix
are used initially, but further reestimates of the means are
iteratively computed in order to maximize the Maximum
Mutual Information (MMI) criterion:

FMMI (λ) =
∑

∀s

log
pλ (s|l (s))

C

∑

∀l pλ (s|l)
C
p (l)

(12)

where pλ (s|l (s)) is the likelihood of the score vector s

given the true target language l(s) and model parameters
λ, p(l) is the probability of language l and C is an
heuristic factor. In this work, 20 MMI iterations were
performed and C was set to 10.

• ZT-Norm: Score normalization techniques such as Z-norm
and T-norm [35] can help removing the environmental
effects on the score space. Nevertheless, they are rarely
applied alone in SLR systems. Instead, they are usually
applied before some other backend. The Z-norm aims to
compensate for deviations related to the target language,
thus Z-norm parameters are estimated using target scores
on a set of development signals containing non-target
languages. The T-norm aims to compensate for deviations
related to the test signal, thus T-norm parameters are
estimated using non-target scores on the test signal.

The backend setup was separately optimized for each
dataset. A ZT-norm followed by a discriminative Gaussian
backend was applied in experiments on the NIST 2007 and
2009 LRE datasets, whereas a generative Gaussian backend
was applied in experiments on the NIST 2011 LRE dataset.
In experiments on the Albayzin 2010 LRE dataset, no backend
was applied, since none of them improved performance. This
latter result could be due to unreliable estimates of backend
parameters, since the development set of the Albayzin 2010
LRE was small compared to those of NIST LRE.

E. Calibration and Fusion

The FoCal multiclass toolkit was applied to perform the
calibration and fusion of SLR systems. The FoCal toolkit
provides a single framework to calibrate/fuse the scores of
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several systems, assuming that they represent (or can be
interpreted) as log-likelihoods. The principles underlying this
approach have been extensively described in [36] [2] [37].

Let L be the number of target languages and let sj(X, t)
be the score corresponding to system j for the input utterance
X and target language t. The calibration and fusion of k
(including k = 1) systems can be simultaneously performed by
computing the fused scores sf (X, t) as a linear combination
of the system scores, as follows [37]:

sf (X, t) =

k
∑

j=1

αjsj(X, t) + βt (13)

The weights αj (j ∈ [1, k]) and βt (t ∈ [1, L]) are estimated
in a discriminative way, by applying linear logistic regression
to minimize the so called Log-Likelihood Ratio CostCLLR,
which measures the information provided by the scores in
order to take good decisions (see Section VI for a formal
definitio of CLLR).

V. DATASETS

A. NIST 2007 LRE

The NIST 2007 LRE [38] define a spoken language
recognition task for conversational speech across telephone
channels, involving 14 target languages.

Training and development data used in this work were
limited to those distributed by NIST to all 2007 LRE par-
ticipants: (1) the Call-Friend Corpus2; (2) the OHSU Corpus
provided by NIST for the 2005 LRE3; and (3) the development
corpus provided by NIST for the 2007 LRE4. A set of 23
languages/dialects was define for training, including target
and non-target5 languages. For development purposes, 10
conversations per language were randomly selected, and the re-
maining conversations (amounting to around 968 hours) were
used for training. Development conversations were further
divided into 30-second speech segments. The total number of
30-second segments was 3073 (see Table I for more details).
Results reported in this paper have been computed on the
subset of 30-second speech segments of the test set for the
closed-set condition (2158 segments), which was the primary
task in the NIST 2007 LRE.

B. NIST 2009 LRE

The NIST 2009 LRE featured 23 target languages [39],
involving 11 target languages for which Conversational Tele-
phone Speech (CTS) was available in the NIST 2007 LRE
dataset, plus 12 new target languages for which Broadcast
Narrow-Band Speech was provided. Most of the speech pro-
vided for the latter consisted of telephone calls included in
Voice of America (VOA) broadcasts. For the 12 new target
languages, NIST distributed between 141 and 199 30-second
audited VOA segments per language. Additional non-audited
materials were provided for the 23 target languages and for
several non-target languages (see Table II).

2See http://www.ldc.upenn.edu/.
3OHSU Corpora, http://www.ohsu.edu/.
4See http://www.itl.nist.gov/iad/mig/tests/lre/2007/.
5French was the only non-target language used for NIST 2007 LRE.

TABLE I
2007 NIST LRE CORE CONDITION: TRAINING DATA (HOURS),

DEVELOPMENT AND EVALUATION DATA (# 30S SEGMENTS),
DISAGGREGATED FOR TARGET AND NON-TARGET LANGUAGES.

Hours # 30s cuts
Language Train Devel Eval
Arabic 52.59 179 80
Bengali 5.0 76 80
Chinese 166.12 567 398
English 143.7 288 240
Farsi 46.22 225 80
German 57.03 173 80
Industani 64.35 243 240
Japanese 79.11 141 80
Korean 72.86 150 80
Russian 5.0 66 160
Spanish 117.35 531 240
Tamil 58.18 165 160
Thai 5.0 64 80
Vietnamese 46.7 205 160
Non-Target 48.74 - -

TOTAL 967.95 3073 2158

TABLE II
2009 NIST LRE CORE CONDITION: TRAINING DATA (HOURS),

DEVELOPMENT AND EVALUATION DATA (# 30S SEGMENTS),
DISAGGREGATED FOR TARGET AND NON-TARGET LANGUAGES.

Hours # 30s cuts
Train Devel Eval

2007 (CTS)
Language

2007
(CTS)

2009
(VOA) devel eval

2009
(VOA) 2009

Amharic - 58.31 - - 262 398
Bosnian - 5.63 - - 259 355
Cantonese 5.0 2.45 83 80 104 378
Creole - 7.21 - - 256 323
Croatian - 6.45 - - 190 376
Dari - 69.05 - - 276 389
EngAmerican 130.7 9.01 204 80 230 896
EngIndian 13.0 - 84 160 - 574
Farsi/Persian 46.22 25.16 225 80 294 390
French 48.74 67.91 222 80 293 395
Georgian - 4.32 - - 166 399
Hausa - 48.31 - - 274 389
Hindi 59.35 10.06 174 160 178 667
Korean 72.86 5.70 150 80 250 463
Mandarin 151.1 32.4 331 158 230 1015
Pashto - 184.3 - - 281 395
Portuguese - 25.74 - - 240 397
Russian 5.0 147.76 66 160 299 511
Spanish 117.35 45.44 531 240 242 385
Turkish - 6.67 - - 289 394
Ukrainian - 5.59 - - 281 388
Urdu 5.0 36.60 69 80 299 379
Vietnamese 46.7 9.5 205 160 240 315
Non-Target 266.92 408.82 - - - -

TOTAL 967.95 1222.39 2344 1518 5433 10571

Training and development data used in this work were lim-
ited to those distributed by NIST to all 2009 LRE participants.
A set of 64 languages/dialects was define for training models.
Each of them was mapped either to a target language or to
non-target languages6. For example, Mainland and Taiwan
from NIST 2007 LRE and Mandarin from VOA were all
mapped to Mandarin, whereas Arabic was mapped to non-
target languages. Persian and Farsi were mapped to the same
language, as was properly pointed out in [28].

For languages appearing in VOA recordings, the longest
speech segments out of each fil were posted to the training

6The set of non-target languages define for the NIST 2009 LRE includes:
Arabic, Bengali, German, Japanese, Tamil and Thai from CTS recordings,
and Albanian, Azerbaijani, Bangla, Burmese, Greek, Indonesian, Khmer, Kin-
yarwanda/Kirundi, Kurdish, Macedonian, Ndebele, Oromo, Serbian, Shona,
Somali, Swahili, Tibetan, Tigrigna, and Uzbek from VOA broadcasts.
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TABLE III
NIST 2011 LRE CORE CONDITION: TRAINING DATA (HOURS) AND DEVELOPMENT AND EVALUATION DATA (# 30S SEGMENTS),

DISAGGREGATED FOR TARGET AND NON-TARGET LANGUAGES

Hours # 30s cuts
Train Devel Eval

2007 2009
Language 2007 (CTS) 2009 (VOA) 2011

(30s audit)
Other

sources (CTS) (eval) (VOA) (eval)
2011

(audit) 2011

Arabic Iraqi - - 0.48 20.34 - - - - 48 308
Arabic Levantine - - 0.47 27.56 - - - - 49 308
Arabic Maghrebi - - 0.41 1.79 - - - - 54 305
Arabic MSA - - 0.47 1.87 - - - - 51 306
Bengali 5.0 54.40 - - 76 80 296 43 - 412
Czech - - 0.41 4.19 - - - - 56 261
Dari - 69.05 - - - - 276 389 - 267
English American 130.7 9.01 - - 204 80 230 896 - 221
English Indian 13.0 - - - 84 160 - 574 - 387
Farsi/Persian 46.22 25.16 - - 225 80 294 390 - 404
Hindi 59.35 10.06 - - 174 160 178 667 - 213
Lao - - 0.50 2.22 - - - - 41 62
Mandarin 151.1 32.40 - - 331 158 230 1015 - 360
Panjabi - - 0.50 - - 32 - 9 45 299
Pashto - 184.38 - - - - 281 395 - 383
Polish - - 0.51 1.79 - - - - 46 267
Russian 5.0 147.76 - - 66 160 299 511 - 441
Slovak - - 0.41 1.69 - - - - 56 280
Spanish 117.3 45.44 - - 531 240 242 385 - 419
Tamil 58.18 - - - 165 160 - - - 414
Thai 5.0 - - - 64 80 - 188 - 375
Turkish - 6.67 - - - - 289 394 - 276
Ukrainian - 5.59 - - - - 281 388 - 170
Urdu 5.0 36.60 - - 69 80 299 379 - 478
Non-Target 257.76 406.93 - - - - - - - -
TOTAL 853.61 1033.45 4.16 61.45 1989 1470 3135 6623 446 7616

dataset, using no more than 2 segments per file and a mini-
mum of 225 segments per language. The number of segments
extracted per fil was relaxed (augmented) for those languages
with few file in VOA.

The whole training dataset (CTS from NIST 2007 LRE and
VOA broadcast speech from NIST 2009 LRE) amounted to
2190 hours. For development, some materials taken from the
development and evaluation datasets of the NIST 2007 LRE
were used (see Table I). For languages appearing in VOA,
besides the audited segments provided by NIST, additional
randomly extracted speech segments, each around 30 seconds
long (specificall , between 25 and 35 seconds long), were
used. The whole development dataset consisted of 9295 seg-
ments. Results reported in this paper were computed on the
NIST 2009 LRE evaluation corpus, specificall on the 30-
second, closed-set condition (primary evaluation task).

C. NIST 2011 LRE

In the NIST 2011 LRE, 24 target languages were considered
(see Table III). Among them, 9 languages had never been
used before in NIST LRE. Development data specificall
collected for these 9 languages were sent to participants,
including 100 30-second segments per language. For a better
coverage, we randomly split those subsets into two disjoint
subsets (each having approximately half the segments for
each language/dialect): the firs half was used to train specifi
models for the new languages, and the second half was used
to estimate backend and fusion parameters [19].

To train more robust models for the target languages,
we added data from databases distributed by the Linguistic
Data Consortium (LDC), some of them containing conver-
sational telephone speech (LDC2006S45 for Arabic Iraqi,

LDC2006S29 for Arabic Levantine) and others containing
broadcast speech (LDC2000S89 and LDC2009S02 for Czech).
For these latter, only automatically detected telephone-speech
segments were used.

The remaining materials were extracted from wide-band
broadcast news recordings, dowsampling them to 8 kHz and
applying the Filtering and Noise Adding Tool7 (FANT) to
simulate a telephone channel. The COST278 Broadcast News
database [40] was used to get speech segments for Czech and
Slovak. Arabic MSA was extracted from Al Jazeera broadcasts
included in the KALAKA-2 database created for the Albayzin
2010 LRE [41]. Finally, broadcasts were also capturedfrom
video archives in TV websites to get speech segments in
Arabic Maghrebi (Arrabia TV, http://www.arrabia.ma) and
Polish (Telewizja Polska, TVP INFO, http://tvp.info). TV
broadcasts were fully audited, so that only reasonably clean
speech segments were selected for training. We couldn’t
collect additional training materials for Panjabi by any means.
Therefore, a single model (trained on just 55 segments) was
used for this language.

A set of 66 languages/dialects was define for training. Each
of them was mapped either to a target language or to non-target
languages8. The training dataset includes the data mentioned
above (one-half of the audited segments plus other sources)
plus 2007 CTS and 2009 VOA signals (see Tables I and II).
The whole training dataset for the NIST 2011 LRE benchmark
amounts to 1953 hours.

7Available online: http://dnt.kr.hsnr.de
8The set of non-target languages define for the NIST 2011 LRE includes:

French, German, Japanese, Korean and Vietnamese from CTS recordings,
and Albanian, Amharic, Creole, French, Georgian, Greek, Hausa, Indonesian,
Kinyarwanda/Kirundi, Korean, Ndebele, Oromo, Shona, Somali, Swahili,
Tibetan and Tigrigna from VOA broadcasts.
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For development purposes, the second half of the audited
segments provided for new target languages, along with the
NIST 2007 and 2009 evaluation datasets, and 30-second
signals used for development in 2007 and 2009 (see Tables I
and II) were used. The whole development dataset consists of
13663 segments. Results reported in this paper were computed
on the NIST 2011 LRE evaluation corpus, specificall on the
30-second, closed-set condition (primary evaluation task) (see
Table III for more details).

D. Albayzin 2010 LRE (KALAKA-2)

The Albayzin 2010 LRE dataset (KALAKA-2) contains
wide-band 16 kHz TV broadcast speech signals for six
target languages (see Table IV). The Albayzin 2010 LRE
[41] featured two main evaluation tasks, on clean and noisy
speech, respectively. In this work, acoustic processing involved
downsampling signals to 8 kHz, since all the systems were
designed to deal with narrow-band signals.

The training, development and evaluation datasets used for
this benchmark match exactly those define for the Albayzin
2010 LRE. For the primary clean-speech language recognition
task, more than 10 hours of clean speech per target language
were used for training. For the noisy-speech language recog-
nition task, besides the clean speech subset, more than 2 hours
of noisy/overlapped speech segments were used for each target
language. The distribution of training data, which amounts to
around 82 hours, is shown in Table IV. Only 30-second seg-
ments were used for development purposes. The development
dataset used in this work consists of 1192 segments, amounting
to more than 10 hours of speech. Results reported in this paper
were computed on the Albayzin 2010 LRE evaluation corpus,
specificall on the 30-second, closed set condition (for both
clean speech and noisy speech conditions). The distribution of
segments in the development and evaluation datasets is shown
in Table IV. For further details, see [42].

TABLE IV
ALBAYZIN 2010 LRE: DISTRIBUTION OF TRAINING DATA (HOURS) AND

DEVELOPMENT AND EVALUATION DATA (# 30S SEGMENTS)

Clean Speech Noisy Speech
Hours # 30s cuts Hours # 30s cuts

Language Train Devel Eval Train Devel Eval
Basque 10.73 146 130 2.25 29 74
Catalan 11.45 120 149 2.18 47 55
English 12.18 133 135 2.53 60 69
Galician 10.74 137 121 2.23 60 83
Portuguese 11.08 164 146 3.28 77 58
Spanish 10.41 136 125 3.70 83 79

TOTAL 66.59 836 806 16.17 356 418

VI. EVALUATION MEASURES

The four benchmarks considered in this work define the
same type of SLR task, which is known as spoken language
verification. Given a trial, consisting of a test segment and a
target language, the system must decide whether or not the
target language is spoken in the test segment (Accept/Reject).

In spoken language verificatio tasks, two types of errors
are considered: (1) misses, those for which the correct answer
is Accept (target trials) but the system says Reject; and (2)

false alarms, those for which the correct answer isReject
(impostor trials) but the system says Accept. Therefore, for any
test condition the corresponding error rates can be computed as
the fraction of target trials that are rejected (miss error rate,
Pmiss) and the fraction of impostor trials that are accepted
(false alarm error rate,Pfa), and suitable cost functions can
be define as combinations of these basic error rates. Note that
the decision of the system may vary according to application
dependent parameters of the cost function (typically, the
prior probabilities of the target languages and the costs of
misses and false alarms). A well calibrated system should be
able to automatically adapt the decisions to each particular
application.

A. Equal Error Rate (EER)

This measure reports system performance at the operation
point for which the false alarm error rate (Pfa) is equal to
the miss error rate (Pmiss). EER is a very simple measure,
useful in many contexts, but it does not allow us to measure
the global performance of a system (i.e. for a wide range of
operation points). Moreover, it does not take into account the
ability of the system to be positioned at the EER operation
point (i.e. the performance loss due to bad calibration), since
the threshold value is implicitly chosen a posteriori by the
evaluator.

B. Average Cost (Cavg)

This measure is a combination of Pmiss and Pfa pooled
across target languages. For closed-set evaluation tasks, it is
computed as follows:

Cavg =
1

L

L
∑

i=1

{CmissPtargetPmiss(i)

+
1

L− 1

L
∑

j=1
j 6=i

Cfa(1− Ptarget)Pfa (i, j) } (14)

where L is the number of target languages, and Ptarget (the
target prior), Cmiss (the miss error cost) and Cfa (the false
alarm error cost) are application-dependent parameters. In this
work, Ptarget = 0.5 and Cmiss = Cfa = 1.

Unlike EER, the Cavg accounts for the calibration loss,
but it is still limited to a single operation point. The Cavg is
chosen as the primary evaluation measure in this work due
to historical reasons: Cavg was the primary measure in NIST
evaluations until 2011, and many authors have reported system
performance in terms of Cavg .

C. NIST 2011 LRE metric,C24
avg

In the NIST 2011 LRE an alternative metric was used
to evaluate system performance, based on a pairwise cost
function define by:

C(L1, L2) = CL1PL1Pmiss(L1)

+CL2(1− PL1)Pmiss(L2) (15)
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where L1 and L2 denote languages 1 and 2, respectively,
CL1 = CL2 = 1 and PL1 = 0.5.

The overall C24
avg measure was define as the mean of the

C(L1, L2) values over the 24 language pairs for which the
Cmin values were greatest9. For further details, see [43].

D. Log-Likelihood Ratio Cost (CLLR)

When the scores represent (or can be interpreted as) log-
likelihoods, systems can be evaluated in terms of the so called
CLLR [36], which has been used as alternative performance
measure in some NIST evaluations. CLLR allows us to eval-
uate the system performance globally by means of a single
numerical value. It only depends on the scores (it does not
depend on application dependent parameters), on their ability
to discriminate amongst target languages each other and on
how well they are calibrated, the two key features of a SLR
system. On the other hand, it has higher statistical significanc
than EER or Cavg , since it is computed from verificatio
scores (in contrast to EER or Cavg, which depend only on
Accept/Reject decisions). Let us now recall how CLLR is
computed.

Let LR(X, i) be the likelihood ratio corresponding to
segment X and target language i. The likelihood ratio can be
expressed in terms of the conditional probabilities of X with
regard to the alternative target and non-target hypotheses, as
follows:

LR(X, i) =
prob(X|i)

prob(X|¬i)
(16)

Let E be an evaluation dataset, consisting of the union
of L disjoint subsets: Ej (j ∈ [1, L]) containing speech
segments in the target language j. Pairwise costs CLLR(i, j),
for i, j ∈ [1, L], are define as follows:

CLLR(i, j) =







1
|Ei|

∑

X∈Ei

log2(1 + LR(X, i)−1) j = i

1
|Ej |

∑

X∈Ej

log2(1 + LR(X, i)) j 6= i

(17)
Finally, the average CLLR is computed by adding the

pairwise costs for all the combinations of target and non-target
languages, as follows:

CLLR =
1

L

L
∑

i=1

{Pt ·CLLR(i, i)+

L
∑

j=1
j 6=i

Pnt ·CLLR(i, j)} (18)

where Pt is the prior probability of target languages and
Pnt = (1− Pt)/(L− 1) is the prior probability of non-target
languages.

The CLLR takes unbounded non-negative values expressed
in information units (bits), with lower values representing
better performance, the value 0 corresponding to a perfect
system and the value log2(L) corresponding to a system which
just relies on priors, thus providing no information to decide
a trial. In this work, the CLLR has been computed by means
of the FoCal toolkit [44]. Further details about the reasons for
using this measure and its interpretation can be found in [36]
[2].

9Cmin(L1, L2): minimum of the pairwise cost function, found for the
optimal operation point (threshold).

VII. DEVELOPMENT EXPERIMENTS

A detailed study was carried out on the NIST 2007 LRE
dataset, with the aim to fin the optimal configuratio of the
iVector system trained on PLLR features. The NIST 2007
LRE dataset was selected as our primary benchmark for
two main reasons: (1) this database is well-known in the
SLR community, and has been used as benchmark for many
techniques and applications; and (2) the size of the database
makes it suitable for extensive experimentation.

A. Dynamic coefficients

Dynamic coefficient of acoustic representations have
proven to be effective in speech, speaker and language recog-
nition, so we firs evaluated the usefulness of this technique
when applied to PLLR features. Three different parameter-
izations based on the PLLR features were tested. The firs
one comprised only the PLLR static features. In the second
one, the feature vector was augmented with first-orde dynamic
coefficient (PLLR+∆), as define in [32]:

∆f(t) =

∑D

d=1 d [f(t+ d)− f(t− d)]

2
∑D

d=1 d
2

(19)

where f(t) is a PLLR feature at time t, and 2D + 1 is the
size of the regression window. First-order dynamic coefficient
were computed using Eq. 19 with D = 2. The third param-
eterization comprised static features plus first and second-
order (acceleration) dynamic coefficient (PLLR + ∆ + ∆∆).
Second-order dynamic coefficient were computed using Eq.
19 on first-orde dynamic coefficients with D = 1.

Tests were carried out using the BUT decoders for Czech,
Hungarian and Russian. Similar results and conclusions can be
obtained with any of them. Therefore, for the sake of clarity,
Table V shows only results for one of them (the BUT decoder
for Hungarian).

TABLE V
EER, Cavg × 100 AND CLLR PERFORMANCE FOR IVECTOR SYSTEMS

USING PLLR, PLLR+∆ AND PLLR+∆+∆∆ FEATURES COMPUTED WITH
THE HU BUT DECODER, ON THE LRE07 PRIMARY EVALUATION TASK.

System EER Cavg × 100 CLLR

PLLR 3.77 3.45 0.564
PLLR+∆ 2.69 2.66 0.382
PLLR+∆+∆∆ 3.58 3.60 0.506

Clearly, the use of first-orde dynamic coefficient improved
significantl the performance of the system. However, adding
second-order dynamic coefficient did not improve but instead
degraded performance. This could be reflectin a dimension-
ality issue: when using the BUT decoder for Hungarian,
PLLR+∆+∆∆ feature vectors reach 177 dimensions, thus
producing supervectors of 181248 dimensions for a 1024-
mixture GMM. Given such a large dimensionality, probably
we don’t have enough data to get reliable estimates of all
the parameters. Therefore, in the experiments reported in the
following sections, PLLR+∆ will be used as features.

B. Variability compensation

SLR performance degradation is related in most cases to
channel/noise variability. Several techniques can be applied to
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minimize the effect of this variability. Among them, Feature
Normalization [45] and Feature Warping [46] are two of
the most effective (the latter, commonly used in speaker
recognition). However, as shown in Table VI, no improvement
in performance was attained when applying any of these
techniques under the PLLR-iVector approach.

TABLE VI
EER, Cavg × 100 AND CLLR PERFORMANCE FOR IVECTOR SYSTEMS

USING PLLR FEATURES COMPUTED WITH THE BUT HU DECODER, WITH:
(A) NO NOISE REDUCTION TECHNIQUE, (B) FEATURE NORMALIZATION

(FN) AND (C) FEATURE WARPING (FW), ON THE LRE07 PRIMARY
EVALUATION TASK.

System EER Cavg × 100 CLLR

PLLR 2.69 2.66 0.382
PLLR +FN 3.04 2.95 0.436
PLLR +FW 3.18 3.21 0.435

C. Overall results on NIST 2007 LRE

Results obtained under the PLLR-iVector approach with the
three BUT decoders, using PLLR features (with firs order dy-
namic coefficient and without noise reduction/compensation)
are shown in Table VII. The performance of acoustic and
phonotactic baseline systems is also presented and compared
to that of the PLLR-iVector systems, along with all the
possible fusions, to study their complementarity.

TABLE VII
EER, Cavg × 100 AND CLLR PERFORMANCE FOR THE MFCC-SDC

IVECTOR BASELINE SYSTEM, IVECTOR SYSTEMS USING PLLR FEATURES,
PHONOTACTIC BASELINE SYSTEMS AND THE FUSION OF THEM, FOR EACH

OF THE BUT DECODERS, ON THE LRE07 PRIMARY EVALUATION TASK.

System EER Cavg × 100 CLLR

MFCC-SDC iVector (a) 2.75 2.85 0.407

Phonotactic (b1) 2.97 2.94 0.440
CZ PLLR iVector (c1) 4.29 4.18 0.550

(a)+(b1) 1.24 1.22 0.189
(a)+(c1) 1.93 1.95 0.280
(b1)+(c1) 1.74 1.79 0.257Fusion

(a)+(b1)+(c1) 1.20 1.24 0.176

Phonotactic (b2) 1.97 2.08 0.310
HU PLLR iVector (c2) 2.69 2.66 0.382

(a)+(b2) 1.02 1.08 0.152
(a)+(c2) 1.40 1.40 0.215
(b2)+(c2) 1.10 1.20 0.166Fusion

(a)+(b2)+(c2) 0.80 0.82 0.124

Phonotactic (b3) 2.70 2.69 0.383
RU PLLR iVector (c3) 4.15 4.08 0.549

(a)+(b3) 1.25 1.13 0.182
(a)+(c3) 1.69 1.72 0.265
(b3)+(c3) 1.75 1.76 0.240Fusion

(a)+(b3)+(c3) 1.03 1.10 0.163

If we focus on single-systems, the best performance was
yielded by the HU phonotactic system, which attained 2.08
Cavg×100, followed by the HU PLLR iVector system, which
outperformed the acoustic MFCC-SDC iVector system. The
RU and CZ phonotactic systems performed worse that the
HU phonotactic system. The performance of the RU and CZ
PLLR iVector systems degraded, with regard to the HU PLLR
iVector system, in the same proportion as the corresponding
phonotactic systems.

Regarding the fused systems, similar conclusions can be
drawn from any of the CZ/RU/HU sets of results. The fusion
of the acoustic iVector system and the PLLR iVector system

yielded very good results. As may be expected, the fusion
of the phonotactic and the acoustic iVector systems provided
very competitive performance, but was closely followed by
the fusion of the phonotactic and PLLR systems. This lat-
ter result is specially relevant, since phonotactic and PLLR
features share a common source (the phone posterior proba-
bilities provided by BUT decoders) but systems proved to be
complementary. This supports our claim that PLLR features
convey acoustic-phonetic information that is partly lost when
collapsing phone posteriors to get phone lattices. Finally, the
best performance was always yielded by the fusion of the three
systems (remarkably, for HU: 0.80 EER, 0.82 Cavg × 100
and 0.124 CLLR). These results support our claim that PLLR
features could be complementary to both short-term spectral
and phonotactic features.

D. Statistical Significance

In this Section, we study the statistical significanc of the
relative performance improvements attained when adding the
PLLR-based system to baseline systems. First, we provide a
quick overview of such improvements in Figure 3, in terms
of the absolute number of miss and false alarm errors for
the baseline systems alone (dark gray columns) and for the
baseline systems fused with the HU PLLR iVector system
(light gray columns). Note that Pmiss and Pfa are computed
by dividing the number of miss and false alarm errors by the
number of target and non-target trials, respectively (in this
regard, the NIST 2007 LRE primary task involves 2158 target
trials and 28054 non-target trials). In all cases, the PLLR
iVector system made errors to decrease in more that 20%,
up to almost 50%.

Fig. 3. False alarm and miss errors on the NIST LRE 2007 primary task
for baseline systems: (a) acoustic MFCC-SDC iVector system, (b2) Phone-
Lattice-SVM system and (a)+(b2) the fusion of the two latter, taken alone
(dark gray) and fused with (c2) the HU PLLR iVector system (light gray).

To measure the statistical significanc of performance im-
provements (in terms of Cavg , which is the primary perfor-
mance measure in this work), a series of two-tailed paired T-
tests was carried out [47], which gives an idea of the variability
of performance improvements (and thus, the robustness of
such improvements) across randomly define sets of data. To
that end, the NIST LRE 2007 evaluation dataset was split into
20 language-balanced disjoint random subsets. Then, Cavg

values were computed on each subset for baseline systems
(a), (b2) and (a)+(b2) and for the same systems fused with
the PLLR HU system: (a)+(c2), (b2)+(c2) and (a)+(b2)+(c2).
Figure 4 shows the mean and the confidenc interval at 95%
confidenc level of the relative Cavg improvements, revealing
that they are statistically significan in all cases.
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Fig. 4. Means of Cavg relative improvements and their corresponding
intervals at 95% confidenc level, on the NIST LRE 2007 primary task, when
fusing the HU PLLR iVector system (c2) with baseline systems: (a) acoustic
MFCC-SDC iVector system, (b2) Phone-Lattice-SVM system and (a)+(b2)
the fusion of the two latter.

VIII. RESULTS

To save the reader an unmanageable floo of results which
would not contribute new insights, in this Section results
will be only reported for a single decoder. Based on the
performance attained on the NIST 2007 LRE dataset, we
will only report results for the BUT decoder for Hungarian,
using PLLR features and their firs order dynamic coefficients
Note, however, that better performance could be attained by
optimizing the setup for each dataset, as previous results using
phonotactic systems suggest [26] [27]. In particular, the best
choice of phone decoder would depend on how well the
acoustic-phonetic space of target languages is covered by the
inventory of phonetic units.

A. NIST 2009 LRE

Table VIII shows the performance of the baseline systems
and the proposed approach on the NIST 2009 LRE primary
evaluation task. Note that the three systems performed more
or less the same, the PLLR-iVector system being slightly
better than the baseline systems. On the other hand, fusion
performance was consistent with the results obtained for
the NIST 2007 LRE dataset. The fusion of the phonotactic
and MFCC-SDC iVector systems provided the best pairwise
performance, followed closely by the fusion of the PLLR
iVector and phonotactic systems. The fusion of the PLLR
iVector and MFCC-SDC iVector systems was also competitive.
Once again, the best performance was achieved when fusing
the three systems: 1.48 Cavg × 100.

TABLE VIII
EER, Cavg × 100 AND CLLR PERFORMANCE FOR THE BASELINE

PHONOTACTIC AND IVECTOR SYSTEMS, THE PLLR IVECTOR SYSTEM
AND THE FUSION OF THEM, ON THE LRE09 PRIMARY EVALUATION TASK.

System EER Cavg × 100 CLLR

MFCC-SDC iVector (a) 2.63 2.70 0.535
Phonotactic (b) 2.44 2.49 0.502

HU PLLR iVector (c) 2.43 2.42 0.505
(a)+(b) 1.63 1.67 0.346
(a)+(c) 1.79 1.79 0.392
(b)+(c) 1.66 1.69 0.357Fusion

(a)+(b)+(c) 1.47 1.48 0.321

B. NIST 2011 LRE

Table IX shows the EER, Cavg and CLLR performance
of the baseline systems and the proposed approach on the
NIST 2011 LRE primary evaluation task. Table X shows
the performance in terms of the actual and minimum C24

avg

(primary metric used in the NIST 2011 LRE).
TABLE IX

EER, Cavg × 100 AND CLLR PERFORMANCE FOR THE PHONOTACTIC
AND IVECTOR BASELINE SYSTEMS, THE PLLR IVECTOR SYSTEM AND

THE FUSION OF THEM, ON THE LRE11 PRIMARY EVALUATION TASK.

System EER Cavg × 100 CLLR

MFCC-SDC iVector (a) 5.95 5.96 1.088
Phonotactic (b) 7.10 7.15 1.280

HU PLLR iVector (c) 5.21 5.18 0.982
(a)+(b) 4.35 4.34 0.823
(a)+(c) 3.99 4.00 0.789
(b)+(c) 4.40 4.39 0.829Fusion

(a)+(b)+(c) 3.70 3.63 0.714

TABLE X
MIN C24

avg × 100 AND ACTUAL C24
avg × 100 PERFORMANCE FOR THE

PHONOTACTIC AND IVECTOR BASELINE SYSTEMS, THE PLLR IVECTOR
SYSTEM AND THE FUSION OF THEM, ON THE LRE11 PRIMARY

EVALUATION TASK.

System min C24
avg × 100 C24

avg × 100

MFCC-SDC iVector (a) 11.63 13.56
Phonotactic (b) 12.49 14.28

HU PLLR iVector (c) 9.83 12.12
(a)+(b) 7.98 10.43
(a)+(c) 7.78 10.19
(b)+(c) 7.75 10.31Fusion

(a)+(b)+(c) 6.68 9.14

For this benchmark, the PLLR iVector approach stands out
among single systems, attaining 5.18 Cavg×100, which means
13% relative improvement with regard to the MFCC-SDC
iVector approach and 28% relative improvement with regard to
the phonotactic approach. Fusion performance was consistent
with these results: the best pairwise fusion involved the two
iVector systems. The next best pairwise fusion depended on
the metric, but both combinations (MFCC-SDC iVector system
+ phonotactic system and PLLR iVector system + phonotactic
system) attained similar performance. In any case, as for the
two previous benchmarks, the PLLR iVector system seemed to
provide complementary information to both baseline systems.
Finally, the fusion of the three systems yielded the best
performance: 3.63 Cavg × 100 and 9.14 C24

avg × 100.

C. Albayzin 2010 LRE

Table XI shows the performance of the baseline systems
and the proposed approach on the Albayzin 2010 LRE closed-
set clean-speech 30-second task. In this case, the best single
system was the proposed PLLR iVector system, yielding 1.41
Cavg × 100, which means a 33% relative improvement with
regard to the acoustic iVector approach and a 40% relative
improvement with regard to the phonotactic approach.

The fusion of the acoustic and PLLR iVector systems
yielded high performance also on this benchmark. Fusing
the phonotactic and acoustic iVector systems yielded almost
the same performance than fusing the phonotactic and PLLR
iVector systems. Finally, as in previous experiments, the fusion



p.12

TABLE XI
EER, Cavg × 100 AND CLLR PERFORMANCE FOR THE BASELINE

SYSTEMS, THE PLLR IVECTOR SYSTEM AND DIFFERENT FUSIONS ON THE
ALBAYZIN 2010 LRE PRIMARY TASK ON CLEAN SPEECH.

System EER Cavg × 100 CLLR

MFCC-SDC iVector (a) 2.25 2.12 0.176
Phonotactic (b) 2.37 2.35 0.218

HU PLLR iVector (c) 1.31 1.41 0.127
(a)+(b) 1.06 1.10 0.106
(a)+(c) 1.18 1.20 0.109
(b)+(c) 0.91 1.09 0.092Fusion

(a)+(b)+(c) 1.00 0.97 0.086

of the three systems yielded the best performance: 0.97
Cavg × 100.

Table XII shows the performance of the baseline systems
and the proposed approach on the Albayzin 2010 LRE closed-
set noisy-speech 30-second task. As on the clean-speech
condition, the best single system was the proposed PLLR
iVector system, yielding 3.17 Cavg × 100, a 20% relative
improvement with regard to the acoustic iVector approach and
a 56% relative improvement with regard to the phonotactic
approach.

TABLE XII
EER, Cavg × 100 AND CLLR PERFORMANCE FOR THE BASELINE

SYSTEMS, THE PLLR IVECTOR SYSTEM AND DIFFERENT FUSIONS ON THE
ALBAYZIN 2010 LRE PRIMARY TASK ON NOISY SPEECH.

System EER Cavg × 100 CLLR

MFCC-SDC iVector (a) 3.85 3.95 0.325
Phonotactic (b) 7.48 7.28 0.621

HU PLLR iVector (c) 3.38 3.17 0.308
(a)+(b) 2.28 2.43 0.211
(a)+(c) 2.80 2.65 0.227
(b)+(c) 2.58 2.65 0.228Fusion

(a)+(b)+(c) 1.75 1.86 0.168

The fusion of the acoustic and PLLR iVector systems
yielded the best pairwise performance. As on the clean-speech
condition, the fusion of the phonotactic and acoustic iVector
systems yielded the same performance than the fusion of the
phonotactic and PLLR iVector systems, and the best fusion
involved the three systems, with 1.86 Cavg × 100. Once again,
the PLLR iVector system seems to provide complementary
information to baseline systems under all configurations

D. Overall Performance Comparison

To have a wider perspective, in this Section we present
results reported by other authors on the same databases. To
allow easy comparisons, the most relevant results obtained
with PLLR features are also included in Tables XIII–XVI (in
boldface).

1) NIST 2007 LRE:Many results have been published in
the literature for the primary task of the NIST 2007 LRE
(30-second speech segments, closed-set condition). Table XIII
shows some of them, reported by the Massachusetts Institute
of Technology (MIT) [21] [18], the Brno University of Tech-
nology (BUT) [48], the Institute for Infocomm Research (IIR)
[49] and the Laboratoire d’Informatique pour la Mecanique et
les Sciences de l’Ingnieur (LIMSI) [50].

Results in Table XIII suggest that quite similar performance
can be attained by applying either acoustic or phonotactic

TABLE XIII
REPORTED RESULTS ON THE PRIMARY TASK OF THE NIST 2007 LRE

Approach Model EER Cavg × 100

GMM-MMI [21] – 2.10
GSV-SVM [21] – 1.92Acoustic
Discriminative GMM-MAP [48] – 1.74
HU, Phone-SVM, lattices [49] 1.84 –
HU, Phone-SVM, lattices [18] 2.40 –Phonotactic
EN, Phone-SVM, lattices [18] 1.80 –

PLLR HU, iVector, generative 2.69 2.66
2 acoustic subsystems [21] – 1.55
2 phonotactic subsystems [21] – 1.55
3 phonotactic subsystems [50] – 0.90
4 subsystems [21] 0.93 0.97

Fusions

acoustic+phonotactic+PLLR 0.80 0.82

approaches. Best performance has been reported when fus-
ing several acoustic and phonotactic subsystems [21]. When
compared to other approaches, the PLLR iVector system
stands out for providing high-performance fusions, thanks
to its complementarity with both acoustic and phonotactic
approaches.

2) NIST 2009 LRE:Table XIV shows results on the primary
task of the NIST 2009 LRE (30-second speech segments,
closed-set condition), reported by MIT [1] [11] [51], BUT [28]
[52] [13] [14], Politecnico di Torino [22] and LIMSI [50].
Again, best performance was attained when fusing several
acoustic and phonotactic subsystems [1] [14] [50] [52] [22].

TABLE XIV
REPORTED RESULTS ON THE PRIMARY TASK OF THE NIST 2009 LRE

Approach Model EER Cavg × 100

GMM-MMI [11] 2.30 –
SVM-GSV [1] – 2.30
JFA [28] – 2.02
iVector (LDA+WCCN) [11] 2.40 –
iVector, generative [13] – 3.09

Acoustic

iVector (Logistic reg.) [14] – 2.35
EN, Phone-SVM [1] – 2.34
HU, Phone-SVM [52] – 3.85Phonotactic
RU, Phone-SVM [52] – 3.03

PLLR HU, iVector, generative 2.43 2.42
2 acoustic subsystems [1] – 2.00
2 acoustic subsystems [14] – 1.78
3 phonotactic subsystems [52] – 2.39
3 phonotactic subsystems [50] – 1.99
3 subsystems [1] – 1.64
36 subsystems [22] – 1.16

Fusions

acoustic+phonotactic+PLLR 1.47 1.48

For this database, the performance of the PLLR iVector
system is among the best of single systems, and the fusion
of the two baseline systems and the PLLR iVector system
yields the second best reported result on this task (the best
one corresponding to the fusion of 36 subsystems).

3) NIST 2011 LRE: Recently, some results have been
published for the primary task of the NIST 2011 LRE (30-
second speech segments, closed-set condition). Table XV
shows those reported by MIT [23], BUT [29], the Institute
for Infocomm Research (I2R) [53] and the Bilbao-Lisboa-
Zaragoza (BLZ) team [54]. For this dataset, performance
is reported in terms of the new metric define by NIST
(C24

avg). Note that the PLLR iVector system yields state-of-
the-art performance. However, performance figure reported
on NIST 2011 LRE tasks strongly depend on the training and
development materials available (due to the scarcity of data for
some target languages) [29]. Therefore, no clear conclusions
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regarding features and methodologies can be drawn from
performance differences found on this dataset.

TABLE XV
REPORTED RESULTS ON THE PRIMARY TASK OF THE NIST 2011 LRE

C24
avg × 100

Approach Model Cavg × 100 min actual
iVector (LDA) [23] 4.15 – 8.90
iVector (HLDA) [29] – – 10.35Acoustic
GMM-SVM [53] – 10.41 –
RU, PCA [29] – – 14.32Phonotactic HU, n-gram iVector [29] – – 15.42

PLLR HU, iVector, generative 5.18 9.83 12.12
5 subsystems [23] 3.30 – 7.00
8 subsystems [54] 3.35 5.09 7.64
3 subsystems [29] – – 8.47
3 subsystems [53] – 9.02 –

Fusions

acoustic+phonotactic+PLLR 3.63 6.68 9.14

4) Albayzin 2010 LRE:Table XVI shows results reported
for the primary task of the Albayzin 2010 LRE (30-second
speech segments, closed-set condition). In this case, the PLLR
iVector system outperforms all the state-of-the-art systems
reported so far, even fusions of several subsystems.

TABLE XVI
REPORTED RESULTS ON THE PRIMARY TASK OF THE ALBAYZIN 2010 LRE

Condition Approach Model Cavg × 100

JFA [55] 1.86Acoustic GMM-MMI [55] 4.33
HU, Phone-ML [55] 4.41Phonotactic EN, Phone-ML [3] 3.26

Clean PLLR HU, iVector, generative 1.41
8 subsystems [55] 1.84
5 subsystems [56] 1.77
2 subsystems [57] 1.81Fusions

acoustic+phonotactic+PLLR 0.97
5 subsystems [56] 3.90
2 subsystems [57] 2.53Noisy Fusions
acoustic+phonotactic+PLLR 1.86

This result is very interesting, since the Albayzin 2010 LRE
dataset consists of wide-band (16kHz) speech signals, which
means that systems reported in the literature may have taken
advantage of the additional information present in the 4-8kHz
band, whereas all the systems reported in this paper (including
the acoustic MFCC-SDC iVector system) have been built and
evaluated on downsampled (8kHz) speech signals.

IX. DISCUSSION

In the following paragraphs, we suggest reasons that may
explain the high performance attained by PLLR features in all
benchmarks and discuss practical issues that make them suit-
able to improve state-of-the-art spoken language recognition
systems.

PLLR features are extracted at every frame, telling us about
the probability that a speech segment around the considered
frame matches the corresponding phone model. It is expected
that segments actually containing a given phone will yield the
highest posterior for that phone, though posteriors for similar
phones or for phones appearing in the surrounding contexts
may be also high. So, the set of PLLRs at any given frame
could provide an indirect way of characterizing the spectral
content of a speech segment through the use of acoustic-
phonetic models.

On the other hand, the MFCC-SDC representation com-
monly used in the iVector SLR systems essentially describes
a spectral trajectory spanning about 200 milliseconds. Phone
decoders are also based on spectral features, either directly
modeling sequences of them or featuring a left-right topol-
ogy of states, which makes them also capable of matching
sequences of spectral features. In this regard, PLLR features
may be providing the same information than MFCC-SDCs.
However, though indirect, PLLR features may provide a more
robust characterization of the spectral content than MFCC-
SDCs, since many different phone models are simultaneously
contributing to such characterization. In the experiments re-
ported above, PLLRs led to better performance than MFCC-
SDCs under the iVector approach, and attending to fusion
performance, they also provided complementary information.

In the PLLR-iVector approach presented in this paper,
phonotactic information conveyed by PLLR sequences has
been left aside. PLLRs have been used just in the same way
as acoustic features, i.e. by modeling frame-level distributions,
firs through a GMM and then by means of an iVector approach
which maps GMM statistics into a reduced dimensionality
total variability space. However, except for the NIST 2007
LRE benchmark, PLLR-iVector systems yielded the same or
better performance than phonotactic systems starting from
the same information source (phone posterior probabilities).
Differences in performance were even more significan on the
Albayzin 2010 LRE datasets, in both clean-speech and noisy-
speech conditions. This could be due to different reasons:
on the one hand, test segments in the Albayzin 2010 LRE
contain continuous multi-speaker speech (not sparse single-
speaker speech fragments, as for NIST datasets); on the other
hand, test segments were extracted from wide-band broadcast
recordings and downsampled to 8 kHz, whereas BUT phone
decoders applied in this work were trained on telephone speech
(which makes them more suitable for NIST LRE datasets).
Probably, under mismatch conditions such as those of the
Albayzin 2010 LRE dataset (specially in the presence of
background noise), n-gram counts are less reliable than PLLR
distributions. This suggests that acoustic-phonetic information
provided by PLLRs may serve the SLR task in a more effective
way than n-gram counts estimated on phone lattices extracted
from the same phone posteriors. In any case, these two ways
of using phone posteriors seem to be complementary, since
fusions of PLLR-iVector and phonotactic systems consistently
led to significan performance improvements.

From a practical point of view, PLLR features can simply
replace the MFCC-SDC features (or whatever other features)
used in acoustic SLR systems. The remaining modules could
be kept unchanged. In fact, this is what we did with the
acoustic iVector system presented in this work. A SLR system
based on PLLR features could thus be easily and rapidly de-
ployed. The public availability and high performance (also in
terms of computation time) of BUT phone decoders for Czech,
Hungarian and Russian makes it very simple to compute PLLR
features and search for the choice of decoder that best fit any
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target application10. Finally, attending to the results presented
in this paper, a PLLR-based iVector system could outperform
other state-of-the-art acoustic and phonotactic systems, but
even in the case it wouldn’t, or if the highest performance
was required, including it in a multi-system fusion would
very likely improve performance, since it has proven to be
complementary to both acoustic and phonotactic systems.

X. CONCLUSIONS

In this work, the so called Phone Log-Likelihood Ratios
(PLLR) have been proposed as features for spoken language
recognition. The proposed features have been analysed and
interpreted, highlighting their potential application to represent
the sounds of spoken language at the acoustic-phonetic level
and their complementarity with regard to other features. From
a practical point of view, PLLRs are naturally obtained from
existing phone decoders and can be easily integrated in state-
of-the-art language recognition systems.

An iVector system trained on PLLR features has con-
sistently yielded competitive performance on four different
benchmarks, outperforming an iVector system trained on
MFCC-SDC features in all cases and yielding the same or
better performance than a Phone-Lattice-SVM system on 3 out
of 4 benchmarks. The fusion of the system with acoustic and
phonotactic systems yielded between 27% and 66% relative
improvements with regard to baseline systems, and the fusion
of the three approaches yielded the best results in all cases,
outperforming the fusion of phonotactic and MFCC-SDC
iVector systems and revealing that the proposed PLLR features
actually provide complementary information to both acoustic
and phonotactic features.
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