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UNIVERSITY OF THE BASQUE COUNTRY

Abstract

Faculty of Science and Technology

Department of Electricity and Electronics

Doctoral Thesis

Frame-Level Features Conveying Phonetic Information for Language

and Speaker Recognition

by Mireia Diez Sánchez

This Thesis, developed in the Software Technologies Working Group of the Depart-

ment of Electricity and Electronics of the University of the Basque Country, focuses

on the research field of spoken language and speaker recognition technologies.

More specifically, the research carried out studies the design of a set of features

conveying spectral acoustic and phonotactic information, searches for the optimal

feature extraction parameters, and analyses the integration and usage of the fea-

tures in language recognition systems, and the complementarity of these approaches

with regard to state-of-the-art systems. The study reveals that systems trained on

the proposed set of features, denoted as Phone Log-Likelihood Ratios (PLLRs), are

highly competitive, outperforming in several benchmarks other state-of-the-art sys-

tems. Moreover, PLLR-based systems also provide complementary information with

regard to other phonotactic and acoustic approaches, which makes them suitable in

fusions to improve the overall performance of spoken language recognition systems.

The usage of this features is also studied in speaker recognition tasks. In this context,

the results attained by the approaches based on PLLR features are not as remarkable

as the ones of systems based on standard acoustic features, but they still provide

complementary information that can be used to enhance the overall performance of

the speaker recognition systems.
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UNIVERSIDAD DEL PAÍS VASCO

Resumen
Facultad de Ciencia y Tecnoloǵıa

Departamento de Electricidad y Electrónica

Tesis doctoral

Caracteŕısticas a Nivel de Trama con Información Fonética para el

Reconocimiento de la Lengua y del Locutor

por Mireia Diez Sánchez

Esta tesis, desarrollada en el Grupo de Trabajo en Tecnoloǵıas del Software del

Departamento de Electricidad y Electrónica de la universidad del Páıs Vasco, se

centra en el campo de investigación del reconocimiento de la lengua y del locutor.

Más espećıficamente, la investigación llevada a cabo estudia el diseño de un conjunto

de caracteŕısticas que aportan información espectro-acústica y fonotáctica, busca la

configuración óptima para la extracción de las mismas, y analiza la integración y uso

de las caracteŕısticas en sistemas de reconocimiento de la lengua, aśı como la com-

plementariedad de estas aproximaciones con respecto a otros sistemas acústicos y

fonotácticos actualmente punteros. El estudio revela que los sistemas entrenados con

estas caracteŕısticas, que podŕıamos denominar cocientes de log-probabilidades de

fonemas (PLLRs, de sus siglas en inglés), son altamente competitivos, superando en

rendimiento a otros sistemas. Además, los sistemas basados en estas caracteŕısticas

también proporcionan información complementaria con respecto a otras aproxima-

ciones fonotácticas y acústicas, lo que los hace adecuados en fusiones, para mejorar

el rendimiento general de los sistemas de reconocimiento.

También se estudia el uso de las caracteŕısticas en tareas de verificación de locu-

tor. En este contexto, los resultados obtenidos por las aproximaciones basadas en

PLLRs no son tan notables como los obtenidos con caracteŕısticas acústicas, pero

proporcionan información complementaria que puede ser utilizada para mejorar el

rendimiento general de los sistemas de reconocimiento de locutor.
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EUSKAL HERRIKO UNIBERTSITATEA

Laburpena

Zientzia eta Teknologia Fakultatea

Elektrizitate eta Elektronika Saila

Leiho-Mailako Karakteristikak Informazio Fonetikoarekin Lengoai eta

Esatarien Egiaztapenerako

Tesi Doktorala

Mireia Diez Sánchez

Euskal Herriko Unibertsitateko Elektrizitate eta Elektronika Saileko Software Tek-

nologien Lan Taldean garatutako tesi hau, hizkuntza eta hiztun ezagutze arloen

ikerketan oinarritzen da.

Zehazki, ikerketak, informazio akustiko-espektrala eta fonotaktikoa daramaten ezau-

garri multzo bat aztertzen du, erauzketa konfigurazio hoberena bilatuz, egungo

hizkuntza-ezagutze sistemetan integratzeko aukerak aztertuz eta beste sistema akus-

tiko eta fonotaktikoekin duen osagarritasuna aztertuz. Ikerketak erakusten du fone-

men log-probabilitate erlazio (ingelesetik, PLLRak) izendatutako ezaugarri hauekin

entrenatutako sistemak, datu-base ugarietan, oso emaitza onak lortzen dituztela,

gaur eguneko beste sistema askorekin konparatuz. Gainera, ezaugarri hauetan oina-

rritutako sistemak beste hurbilketa akustiko eta fonotaktikoekiko informazio osaga-

rria eskaintzen dutenez, sistema orokorren errendimendua hobetzeko egokiak dira.

Ezaugarri hauen erabilpena hiztun-ezagutze sistemetan ere ikertzen da. Kontextu

honetan, PLLRak erabiltzen dituzten sistemen emaitzak ez dira sistema akustikoak

lotzen dituztenak bezain ikusgarriak, baina hurbilpenak oraindik informazio osaga-

rria eskaintzen du, sistema orokorren ekimena hobetzeko erabilgarria izan litekeena

ere.

http://www.ehu.eus/eu/home
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d́ıa.

And, as it wouldn’t be me without a touch of the bizarre, thanks to all kinds of

music, desserts and chocolate, because without them I would have probably lost the

little sanity that I’ve got left :).



“Only as high as I reach can I grow,

only as far as I seek can I go,

only as deep as I look can I see,

only as much as I dream can I be”

- Karen Ravn





Contents

Abstract iii

Acknowledgements vii

Contents x

List of Figures xv

List of Tables xvii

Abbreviations xxi

Sinopsis xxv

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structure of Recognition Systems . . . . . . . . . . . . . . . . 2

1.1.2 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motivation and Objectives of the Work . . . . . . . . . . . . . . . . 6

1.3 Structure of the Manuscript . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the Art 11

2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 NIST LRE Benchmarks . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Albayzin LRE datasets . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 RATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Voice Activity Detection . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Spectral and Acoustic low-level Features . . . . . . . . . . . . 18

xi



xii Contents

2.2.4 Phonetic and Phonotactic high-level Features . . . . . . . . . 20

2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Channel Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Calibration and Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Score Normalization . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 Backend models . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.3 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Phone Log-Likelihood Ratios 45

3.1 Definition of Phone Log-Likelihood Ratios (PLLR) . . . . . . . . . . 46

3.2 Configuration of a SLR System Based on PLLR Features . . . . . . 49

3.3 Search for the Optimal PLLR Feature Configuration . . . . . . . . . 49

3.3.1 Phone Log-Likelihoods vs PLLRs . . . . . . . . . . . . . . . . 50

3.3.2 Dynamic Coefficients . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Variability Compensation . . . . . . . . . . . . . . . . . . . . 51

3.4 Overall Performance of PLLR Based Systems . . . . . . . . . . . . . 52

3.4.1 Results on the NIST 2007 LRE dataset . . . . . . . . . . . . 53

3.4.2 Results on the NIST 2009 LRE dataset . . . . . . . . . . . . 56

3.4.3 Results on the NIST 2011 LRE dataset . . . . . . . . . . . . 57

3.4.4 Results on the Albayzin 2010 LRE dataset . . . . . . . . . . 60

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Dimensionality Reduction on PLLRs 63

4.1 Supervised and Unsupervised Dimensionality Reduction Techniques 64

4.1.1 Supervised Techniques . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1.1 Results and Selection of the Optimal Supervised Tech-
nique . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Unsupervised Techniques . . . . . . . . . . . . . . . . . . . . 68

4.1.2.1 Results and Selection of the Optimal Unsupervised
Technique . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Combination of Systems using Different Decoders . . . . . . . 69

4.1.3.1 Results on the NIST 2007 LRE dataset . . . . . . . 70

4.1.3.2 Results on the NIST 2011 LRE dataset . . . . . . . 71

4.2 PCA Dimensionality Optimization . . . . . . . . . . . . . . . . . . . 72

4.3 Shifted Delta PLLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Shifted Delta Parameter Optimization . . . . . . . . . . . . . 73

4.3.2 Results on NIST 2011 LRE dataset . . . . . . . . . . . . . . . 75

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents xiii

5 PLLR Feature Projection 77

5.1 Analysis of the PLLR Feature Space . . . . . . . . . . . . . . . . . . 77

5.2 Projection of the Features . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Feature Decorrelation . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Results on the NIST 2007 LRE dataset . . . . . . . . . . . . 82

5.2.3 Results on the NIST 2009 LRE dataset . . . . . . . . . . . . 84

5.2.4 Results on the NIST 2011 LRE dataset . . . . . . . . . . . . 84

5.3 Projected PLLRs in Noisy Environments . . . . . . . . . . . . . . . . 85

5.3.1 Baseline Systems . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Results on the RATS dataset . . . . . . . . . . . . . . . . . . 86

5.4 Shifted Delta Projected PLLRs . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Results on the NIST 2007 LRE dataset . . . . . . . . . . . . 88

5.4.2 Results on the NIST 2011 LRE dataset . . . . . . . . . . . . 89

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 PLLRs for Speaker Recognition 91

6.1 State-of-the-art Speaker Recognition . . . . . . . . . . . . . . . . . . 92

6.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Phone Posteriors for Speaker Characterization . . . . . . . . . . . . . 97

6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Search for the Optimal PLLR Feature Configuration . . . . . . . . . 101

6.5 Overall Performance of PLLR Based Systems . . . . . . . . . . . . . 103

6.5.1 Results on the NIST 2010 SRE dataset . . . . . . . . . . . . 103

6.5.2 Results on the NIST 2012 SRE dataset . . . . . . . . . . . . 103

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions and future work 107

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Datasets 111

A.1 NIST 2007 LRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 NIST 2009 LRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.3 NIST 2011 LRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.4 Albayzin 2010 LRE (KALAKA-2) . . . . . . . . . . . . . . . . . . . 116

A.5 NIST 2010 SRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.6 NIST 2012 SRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.7 RATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xiv Contents

B Participation in International Challenges 121

B.1 NIST SRE 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 NIST LRE 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.3 NIST SRE 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.4 MOBIO 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 135



List of Figures

1.1 Structure of a recognition system. . . . . . . . . . . . . . . . . . . . . 3

2.1 Classification of features for spoken language recognition. . . . . . . 15

2.2 Window parameter definitions for the estimation of the first order
deltas that conform SDC features. . . . . . . . . . . . . . . . . . . . 19

2.3 Representation of a phone lattice of a utterance using a phone decoder
of 5 phone units. The 1-best decoding output is marked as the optimal
path in the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Two dimensional representation of a SVM . . . . . . . . . . . . . . . 26

2.5 Diagram of a PRLM system . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Diagram of a PPRLM system . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Calibration and fusion of several SLR systems . . . . . . . . . . . . . 38

2.8 Target and non-target trials and classification errors . . . . . . . . . 38

2.9 DET curves for two systems. The system operating point is marked with

(x) whereas the optimal operating point is marked with (o). . . . . . . . 40

3.1 Standard 2-simplex defined by phone posteriors in the case of a phone
decoder with 3 phonetic units. . . . . . . . . . . . . . . . . . . . . . 47

3.2 Distributions of frame-level phone posteriors (first row), phone log-
posteriors (second row) and phone log-likelihood ratios (third row) for
5 phonetic units (A:, E, e:, i, O) of the Brno University of Technology
decoder for Hungarian, computed on a subset of the NIST 2007 LRE
test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 False alarm and miss errors on the NIST LRE 2007 primary task
for baseline systems: (a) acoustic MFCC-SDC i-vector system, (b2)
Phone-Lattice-SVM system and (a)+(b2) the fusion of the two latter,
taken alone (dark gray) and fused with (c2) the HU PLLR i-vector
system (light gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



xvi List of Figures

3.4 Means of Cavg relative improvements and their corresponding inter-
vals at 95% confidence level, on the NIST LRE 2007 primary task,
when fusing the HU PLLR i-vector system (c2) with baseline systems:
(a) acoustic MFCC-SDC i-vector system, (b2) Phone-Lattice-SVM
system and (a)+(b2) the fusion of the two latter. . . . . . . . . . . . 55

4.1 IPA charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 IPA chart for vowel phonemes of Hungarian . . . . . . . . . . . . . . 66

4.3 Cavg and 10×CLLR performance for the PLLR-based baseline system (with

feature dimensionality=59) and systems trained on the set of PLLR features

obtained after PCA projection into different dimensionalities, on the NIST

2007 LRE primary task. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Distributions of (a) frame-level phone posteriors and (b) frame level phone

log-likelihood ratios for the Hungarian phone a:. . . . . . . . . . . . . . 78

5.2 Distributions of (a) phone posteriors and (b) PLLRs, for three pairs of

phones, a: vs E (red), i vs i: (black) and dz vs h (blue). . . . . . . . . . 79

5.3 Distributions of (a) phone posteriors and (b) PLLRs, for the set of phones

(a:, E, O). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 (a) Standard 2-simplex defined by phone posteriors in the case of a phone

decoder with 3 phonetic units. Graphs (b) and (c) show the hyper-surface

where PLLRs lie for the case of a phone decoder with 3 phonetic units. . 80

5.5 Distribution of the PLLRs shown in Figures 2(b) and 3(b) after projecting

them into the defined hyper-plane tangential to the surface at the point

[1/N, 1/N, ..., 1/N]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Cavg × 100 performance for the Baseline (blue), Projected PLLR (red),

Projected PLLR + PCA 58 (green) and Projected PLLR + PCA 13 + SD

(purple) approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Normalized average posteriors p̂(i|s) (see Equation 6.11) of seven Hungar-

ian phones on the same utterance (sx9) of the TIMIT dataset for 7 different

speakers. The subset of phones represents fricative labiodental consonants

(f and v) and a subset of vowels (e:, :2, 2, O, u), as defined in the Interna-

tional Phonetic Alphabet. . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.1 DET curves of the EHU fused system for the NIST 2010 SRE core
test conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 DET curves of the primary systems submitted to MOBIO 2013 (im-
ages taken from [84]) . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of Tables

3.1 Cavg × 100 and CLLR performance for i-vector systems using phone
log-posteriors (PL) features and PLLRs computed with the HU BUT
decoder, on the NIST 2007 LRE primary evaluation task. . . . . . . 50

3.2 Cavg × 100 and CLLR performance for i-vector systems using PLLR,
PLLR+∆ and PLLR+∆+∆∆ features computed with the HU BUT
decoder, on the NIST 2007 LRE primary evaluation task. . . . . . . 51

3.3 Cavg×100 and CLLR performance for i-vector systems using PLLR fea-
tures computed with the BUT HU decoder, with: (a) no noise reduc-
tion technique, (b) Feature Normalization (FN), (c) Feature Warping
(FW) and (d) RASTA, on the NIST 2007 LRE primary evaluation task. 51

3.4 Cavg×100 and CLLR performance for the MFCC-SDC i-vector baseline
system, i-vector systems using PLLR features, phonotactic baseline
systems and the fusion of them, for each of the BUT decoders, on the
NIST 2007 LRE primary evaluation task. . . . . . . . . . . . . . . . 54

3.5 Cavg × 100 and CLLR performance for the baseline phonotactic and
i-vector systems, the PLLR i-vector system and the fusion of them,
on the NIST 2009 LRE primary evaluation task. . . . . . . . . . . . 56

3.6 Cavg × 100 and CLLR performance for the i-vector baseline system
using acoustic features (MFCC-SDC), i-vector systems with PLLR+∆
features, phonotactic baseline systems and the fusion of them, for each
of the BUT decoders, on the NIST 2011 LRE primary evaluation task. 58

3.7 min C24
avg×100 and actual C24

avg×100 performance for the phonotactic
and acoustic i-vector baseline systems, the PLLR+∆ i-vector system
and the fusion of them, on the NIST 2011 LRE primary evaluation
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Cavg × 100 and CLLR performance for the baseline systems, and the
PLLR i-vector systems using phone decoders for CZ, HU and RU on
the Albayzin 2010 LRE primary task on clean and noisy speech. . . 60

3.9 Cavg×100 and CLLR performance for the baseline systems, the PLLR
i-vector system and different fusions on the Albayzin 2010 LRE pri-
mary task on clean and noisy speech. . . . . . . . . . . . . . . . . . . 61

xvii



xviii List of Tables

4.1 IPA chart for the consonant phonemes of Hungarian . . . . . . . . . 66

4.2 IPA chart for the consonant phonemes of Hungarian merged according
to Family-MP criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 IPA chart for the consonant phonemes of Hungarian merged according
to Family-M criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 %Cavg and CLLR performance for the PLLR i-vector system with
different knowledge-based phone merging approaches, on the NIST
2007 LRE primary task. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 %Cavg and CLLR performance for the PLLR i-vector system with
different unsupervised dimensionality reduction approaches, on the
NIST 2007 LRE primary task. . . . . . . . . . . . . . . . . . . . . . 70

4.6 %Cavg and CLLR performance for PLLR i-vector baseline system, and
systems using PLLR features reduced to the Family-MP set and pro-
jected with PCA, for each of the BUT decoders, and their fusion, on
the NIST 2007 LRE primary task. . . . . . . . . . . . . . . . . . . . 70

4.7 %Cavg, CLLR and C24
avg×100 performance for the PLLR i-vector base-

line system, and systems using PLLR features reduced to the Family-
MP set and projected with PCA, for each of the BUT decoders, and
their fusion, on the NIST 2011 LRE primary task. . . . . . . . . . . 71

4.8 SLR performance of an i-vector system based on SD-PLLR features
using different N values on the NIST 2007 LRE 30s test set. . . . . . 74

4.9 SLR performance of an i-vector system based on SD-PLLR features,
using different P values, on the NIST 2007 LRE 30s test set. . . . . 74

4.10 SLR performance of an i-vector system based on SD-PLLR features,
using different d values, on the NIST 2007 LRE 30s test set. . . . . . 74

4.11 SLR performance of i-vector systems based on PLLR and SD-PLLR
features, on the NIST 2011 LRE 30s test set. . . . . . . . . . . . . . 75

5.1 %Cavg and CLLR performance (and relative improvements) for the
PLLR i-vector baseline system, and systems using projected PLLR
features on the NIST 2007 LRE primary evaluation task. . . . . . . 83

5.2 %Cavg and CLLR performance for the PLLR i-vector baseline systems,
systems using PLLR projected features, acoustic MFCC and phono-
tactic systems and fusions of them on the NIST 2009 LRE primary
evaluation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 %Cavg and CLLR performance for the PLLR i-vector baseline systems,
systems using PLLR projected features, acoustic MFCC and phono-
tactic systems and fusions of them on the NIST 2011 LRE primary
evaluation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 %Cavg performance for the PLP2, SnGM and PLLR systems with
logistic regression classifiers on the RATS evaluation set for the 120s,
30s, 10s and 3s signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 87



List of Tables xix

5.5 %Cavg performance for the PLP2, SnGM and PLLR systems with
neural network classifiers on the RATS evaluation set for the 120s,
30s, 10s and 3s signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Cavg × 100 and CLLR performance for the Projected PLLR + PCA, Pro-

jected PLLR + PCA reduced and Projected PLLR + PCA reduced + SD

approaches on the NIST 2007 LRE primary evaluation tasks. . . . . . . . 88

5.7 Cavg×100, CLLR and %C24
avg performance for the Projected PLLR + PCA,

and Projected PLLR + PCA reduced + SD approaches for 13, 15 and 17

dimensionalities on the NIST 2011 LRE primary evaluation tasks. . . . . 90

6.1 MinDCF performance of systems using only PLLR features and PLLR
features augmented with dynamic coefficients on the NIST 2010 SRE
core conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 MinDCF performance of systems using PLLR features under different
configurations on the NIST 2010 SRE core conditions. . . . . . . . . 102

6.3 MinDCF performance of systems using PLLR and projected PLLR
features on the NIST 2010 SRE core conditions. . . . . . . . . . . . . 102

6.4 Results of i-vector /PLDA SR systems based on MFCC and PLLR
features, and the fusion of them, on the NIST 2010 SRE core conditions.104

6.5 Results of i-vector /PLDA SR systems based on MFCC and PLLR
features, and the fusion of them, on the NIST 2012 SRE core condi-
tions 2 and 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.1 2007 NIST LRE core condition: training data (hours), development
and evaluation data (# 30s segments), disaggregated for target and
non-target languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2 2009 NIST LRE core condition: training data (hours), development
and evaluation data (# 30s segments), disaggregated for target and
non-target languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3 NIST 2011 LRE core condition: training data (hours) disaggregated for

target and non-target languages. . . . . . . . . . . . . . . . . . . . . . . 114

A.4 NIST 2011 LRE core condition: development and evaluation data (30s

segments), disaggregated for target and non-target languages. . . . . . . 115

A.5 Albayzin 2010 LRE: Distribution of training data (hours) and devel-
opment and evaluation data (30s segments). . . . . . . . . . . . . . . 117

A.6 Number of speakers uniquely included in each dataset (diagonal) and
shared with other datasets (outside the diagonal). . . . . . . . . . . 117

A.7 NIST 2004, 2005 and 2006 SRE signal distribution. . . . . . . . . . 118

A.8 NIST 2008 SRE signal distribution. . . . . . . . . . . . . . . . . . . 118

A.9 NIST 2008 Follow Up signal distribution. . . . . . . . . . . . . . . . 118

A.10 NIST 2012 SRE iVector and PLDA training signal distribution. . . 119

B.1 Backend and fusion configuration for the EHU systems submitted to
the NIST 2011 LRE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xx List of Tables

B.2 Performance (in terms of Cavg) of the phonotactic and acoustic sub-
systems and partial and complete fusions on the NIST 2011 LRE 30s
test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.3 Official NIST 2011 LRE results for the EHU systems. . . . . . . . . 128

B.4 Results of EHU i-vector-PLDA systems based on MFCC and PLLR
features, and the fusion of them, on the NIST 2012 SRE core conditions.131

B.5 Official MOBIO 2013 results for several primary systems. . . . . . . 133



Abbreviations

TECHINICAL TERMS

ActDCF Actual Detection Cost Function

Cavg Average Cost

CLLR Log-Likelihood Ratio Cost

CMS Cepstral Mean Subtraction

CTS Conversational Telephone Speech

DCF Detection Cost Function

DCT Discrete Cosine Transform

DET Detection Error Tradeoff

DNN Deep Neural Networks

DFT Discrete Fourier Transform

EER Equal Error Rate

EM Expectation Maximization

Fact Acutal Relative Confusion

FFT Fast Fourier Transform

GMM Gaussian Mixture Model

HMM Hidden Marcov Model

HTK Hidden Markov Model ToolKit

IPA International Phonetic Alphabet

JFA Joint Factor Analysis

LE-GMM Linearized Eigenchannel GMM

LID Language IDentification

LLR Log-Likelihood Ratio

LR Logistic Regression

LRE Language Recognition Evaluation

MAP Maximum A Posteriori

MD Minumum Divergence

MinDCF Minimum Detection Cost Function

ML Maximum Likelihood

MFCC Mel Frequency Cepstral

Coefficients

MMI Maximum Mutual Information

NN Neural Network

OOS Out Of Set

PCA Principal Component Analysis

PLLR Phone Log-Likelihood Ratios

PLDA Probabilistic Linear

Discriminant Analysis

PLP Perceptual Linear Prediction

PPRLM Parallel Phone Recognition

Language Modeling

PRLM Phone Recognition Language

Modeling

RASTA RelAtive SpecTrA

RATS Robust Automatic Transcription

of Speech

SD Shifted Delta

SDC Shifted Delta Cepstrum

SLR Spoken Language Recognition

SNR Signal Noise Ratio

SR Speaker Recognition

SRE Speaker Recognition Evaluation

SVM Support Vector Machine

TRAP Temporal Patterns

UBM Universal Background Model

VAD Voice Activity Detector

VOA Voice Of America

xxi



xxii Abbreviations

INSTITUTIONS

BUT Brno University of Technology

EHU Euskal Herriko Univertsitatea

University of the Basque Country

GTTS Grupo de Trabajo en Tecnoloǵıas
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Sinopsis

El reconocimiento de la lengua y el reconocimiento de locutor son tareas de re-

conocimiento de patrones que consisten en determinar, mediante métodos computa-

cionales, la lengua hablada y la identidad del hablante en una señal de voz, respec-

tivamente.

Los sistemas de reconocimiento tienen una estructura general que consta de diferen-

tes módulos. En primer lugar se encuentra el módulo de extracción de caracteŕısticas,

que toma como entrada una señal de audio y obtiene un conjunto de caracteŕısticas

que recogen información, entre otras cosas, sobre la lengua y sobre el hablante. A

continuación se encuentra el clasificador. Entrenado durante la fase de modelado,

este módulo toma como entrada las caracteŕısticas de cada señal de voz y obtiene

una serie de puntuaciones, indicando su similitud con cada modelo objetivo. Las

puntuaciones deben ser ajustadas en el módulo de calibrado para ecualizarlas de tal

modo que puedan enfrentarse a un mismo umbral sobre el que tomar las decisiones

finales.

La mayor dificultad de las tareas de reconocimiento de la lengua y del locutor re-

side en extraer de la señal de voz información relevante para el reconocimiento,

descartando la relativa a otras fuentes de variabilidad, reunidas generalmente bajo

la denominación de variabilidades de canal. Estos cambios o variaciones de la señal

pueden ser originados por el aparato de grabación o el canal de transmisión, ruido

ambiente, estados de ánimo o condiciones f́ısicas del hablante, variabilidad rela-

cionada con el locutor en el caso de la lengua, o de la lengua en el caso del locutor,

etc.

Los estudios realizados en esta tesis se han enfocado principalmente a la tarea de

reconocimiento de la lengua y han sido extendidos posteriormente al reconocimiento

del locutor.

Las diversas aproximaciones desarrolladas para el reconocimiento de la lengua, se

basan en diferentes tipos de caracteŕısticas. En términos generales, estas carac-

teŕısticas abarcan propiedades espectrales, fonéticas, acústicas, temporales o

fonotácticas de la señal, prosodia u otras caracteŕısticas de ı́ndole más compleja

como la construcción de palabras y frases. La mayoŕıa de los sistemas hacen uso
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de dos conjuntos principales de caracteŕısticas: acústico-espectrales y fonéticas. Las

caracteŕısticas acústico-espectrales (también denominadas de bajo nivel) extraen la

información analizando el espectro de la señal mediante ventanas de unos 20-30

milisegundos, intentando reproducir los mecanismos de la percepción humana de los

sonidos. Las caracteŕısticas fonéticas (o de alto nivel) extraen información relativa a

los fonemas contenidos en la señal. Dado que cada lengua tiene su propio inventario

fonético, es fácil intuir cómo la identificación de los fonemas puede ayudar en las

tareas de reconocimiento. En muchos casos los sistemas finales de reconocimiento

de la lengua son combinaciones de diversos sistemas (basados en ambos tipos de

caracteŕısticas) fusionados en la parte final del proceso, conocida como calibrado, en

la que se transforman y combinan las puntuaciones.

Esta tesis se centra en la extracción de unas caracteŕısticas con información fonética

a nivel de trama, con el objetivo de combinar aportes de ambos tipos de aproxima-

ciones en las propias caracteŕısticas. El trabajo desarrollado abarca la optimización

e integración de las caracteŕısticas en sistemas de reconocimiento de la lengua y del

locutor.

Las caracteŕısticas propuestas, denominadas ”relaciones de log probabilidades de

fonemas” (PLLRs, de sus siglas en inglés), son obtenidas a partir de probabilidades

fonéticas. Dada una señal de audio y un decodificador fonético con un inventario

de N fonemas, se supone que el decodificador proporciona la probabilidad acústica

p para cada una de las unidades fonéticas i (1 ≤ i ≤ N), en cada ventana (trama)

correspondiente al instante de tiempo t, p(i|t). El vector N-dimensional obtenido

es aquel que, según los parámetros del decodificador, mejor describe el contenido

espectral de la ventana de análisis. Geométricamente, este vector puede verse como

un punto dentro del simplex N-1 estándar, donde cada vértice representa unidades

fonéticas puras y los bordes mezclas de las unidades fonéticas que unen.

Los PLLRs se calculan para cada fonema i y para cada ventana en el instante de

tiempo t, según la siguiente expresión:

PLLR(i|t) = log
p(i|t)

1
(N−1) (1− p(i|t))

i = 1, ..., N (1)

Los PLLRs, al ser caracteŕısticas obtenidas a nivel de trama, son fácilmente in-

tegrables en sistemas del estado del arte basados en otro tipo de caracteŕısticas



espectrales. En nuestros estudios se han utilizado bajo la aproximación conocida

como Total Variability Factor Analysis o i-vector, una de las técnicas que mejores

resultados proporcionan, y por lo tanto una de las técnicas más utilizadas.

Los primeros análisis se centran en la optimización de los parámetros de extracción de

las caracteŕısticas PLLR. Se explora el uso de formulaciones próximas a la definición

presentada, aśı como la integración de información con un mayor contexto temporal

alrededor de la ventana, al igual que se hace con otras caracteŕısticas espectrales

como los Mel Frequency Cepstral Coefficients (MFCC). Por otro lado, se estudia

la aplicación de diferentes técnicas de compensación de variabilidad a nivel de ex-

tracción de caracteŕısticas, y el uso de diversos decodificadores fonéticos para el

cómputo de los PLLRs.

Una vez encontrada la configuración óptima, haciendo uso de coeficientes dinámicos

de primer orden, los resultados obtenidos por los sistemas basados en las carac-

teŕısticas PLLR son contrastados con aquellos obtenidos por sistemas acústicos

basados en MFCCs, que aplican el mismo modelado, y con sistemas fonotácticos,

que utilizan los mismos decodificadores como base para la extracción de sus carac-

teŕısticas. Se analizan los resultados en cuatro bases de datos diferentes: las tres

últimas bases de datos proporcionadas por el National Institute of Standards Tech-

nology (NIST), para las NIST 2007, 2009 y 2011 Language Recognition Evaluations

(LRE), de gran relevancia en el campo de investigación de reconocimiento de la

lengua; y la base de datos proporcionada por GTTS para Albayzin 2010 LRE, en la

que se analizan los resultados en entornos y tipos de señal de diferente naturaleza.

Los resultados obtenidos son consistentes en todas las bases de datos. Los sistemas

basados en PLLRs obtienen en la mayoŕıa de los casos tasas de error inferiores a las

de los sistemas del estado del arte, lo que pone de manifiesto la utilidad de estas

caracteŕısticas.

Por otro lado, también se procede a la fusión de sistemas. Se fusionan las pun-

tuaciones del sistema basado en PLLRs con las del sistema acústico, revelando una

alta complementariedad entre ambos sistemas. La fusión del sistema basado en

caracteŕısticas PLLR con sistemas fonotácticos evidencia también una alta comple-

mentariedad. Por último, la fusión de los tres sistemas proporciona mejoras con

respecto a cualquier fusión de sistemas por pares. Este resultado es muy significa-

tivo, ya que muestra que la información aportada por los PLLRs puede utilizarse



para mejorar el rendimiento total de sistemas del estado del arte, cualesquiera que

sean las caracteŕısticas utilizadas.

El siguiente estudio se centra en la reducción de dimensionalidad de los PLLRs,

debido a que ésta es relativamente grande en comparación con otros vectores de car-

acteŕısticas espectrales. La reducción podŕıa facilitar la aplicación de otras técnicas

en la extracción de PLLRs. Se analizan varias aproximaciones supervisadas, basadas

en el conocimiento de la naturaleza fonética de la lengua usada en el decodificador.

Por otro lado, se estudian también técnicas no supervisadas, que reducen el tamaño

del vector basándose en correlaciones entre fonemas o en la frecuencia de fonemas,

aśı como la técnica conocida como Principal Component Analysis (PCA), que realiza

una transformación ortogonal en el espacio de los PLLRs. Se concluye que el vector

de caracteŕısticas puede ser reducido a prácticamente un tercio de su dimensionalidad

(alcanzando una dimensionalidad comparable con otras aproximaciones espectrales)

mediante técnicas supervisadas, sin degradar significativamente el rendimiento del

sistema. Por otro lado, la aplicación de PCA revela que el vector puede ser reducido

mejorando además los resultados obtenidos por el sistema.

Una vez encontrada la forma óptima de reducir el vector de caracteŕısticas, se procede

a estudiar la mı́nima dimensionalidad que se puede alcanzar mediante PCA (man-

teniendo un compromiso con los resultados obtenidos) con el objetivo de calcular

secuencias de derivadas (Shifted Delta, en inglés) sobre los PLLRs, ya que su uso es

común sobre caracteŕısticas espectrales (MFCCs) en sistemas de reconocimiento de

la lengua. Definida la mı́nima dimensionalidad, se procede al barrido de parámetros

de extracción de las secuencias de derivadas. Finalmente, la aplicación de la com-

binación óptima revela que su uso es acertado también sobre los PLLRs, ya que la

información que aportan mejora significativamente los resultados obtenidos por el

sistema.

El descubrimiento de que la reducción mediante PCA proporciona mejoras en el sis-

tema, ha derivado posteriormente en el análisis del espacio de los PLLRs, con el fin de

entender posibles oŕıgenes de este resultado. El estudio revela que los PLLRs están

confinados en un sub-espacio limitado por un hiperplano que es asintóticamente

perpendicular a los ejes de los PLLRs. Este efecto limitaŕıa presuntamente el

movimiento de los PLLRs respecto a los ejes y por tanto, la información que pro-

porcionan. Se diseña un método de proyección que elimine el efecto. La proyección



de los PLLRs potencia el rendimiento del sistema de forma significativa, resultados

que son mejorados aún más si la proyección se combina con la transformación PCA,

debido a la decorrelación de parámetros que realiza esta última, que optimiza la

distribución de las caracteŕısticas para el tipo de modelado utilizado.

Posteriormente, fruto de una estancia con el grupo Speech@FIT de la universidad

de Brno, se analiza el rendimiento del sistema basado en PLLRs proyectados, bajo

aproximaciones basadas también en i-vectors, pero con modelado final utilizando

regresión loǵıstica y redes neuronales, y sobre la base de datos Robust Automatic

Transcription of Speech (RATS). Los resultados obtenidos con señales ruidosas y de

duraciones más cortas revelan, una vez más, la alta competitividad de los sistemas

basados en PLLRs.

A continuación, se procede a combinar la proyección de las caracteŕısticas con la

aplicación de las secuencias de derivadas. Los resultados obtenidos en las bases de

datos NIST 2007 y 2011 LRE muestran que la combinación de ambas técnicas es

acertada.

Finalmente, se estudia el uso de los PLLRs en sistemas de reconocimiento de locu-

tor. Se procede, en primer lugar, a la optimización de parámetros de extracción de

PLLRs para estos sistemas. Una vez encontrada la combinación óptima, haciendo

uso también de coeficientes dinámicos de primer orden, se comprueban los resultados

de los sistemas utilizando i-vectors junto con Probabilistic Linear Discriminant Anal-

ysis (PLDA). Para ello se emplean las dos últimas bases de datos proporcionadas

por el NIST para las NIST 2010 y 2012 (Speaker Recognition Evaluation) SRE.

En este caso, se observa que los sistemas basados en PLLRs no obtienen resultados

tan relevantes como los obtenidos por sistemas basados en caracteŕısticas acústico-

espectrales como los MFCCs. Aun aśı, al proceder a la fusión de sistemas, se obtiene

una ganancia en varias condiciones de evaluación, lo que revela que la complemen-

tariedad de las caracteŕısticas aporta información útil para mejorar el rendimiento

del sistema.





Chapter 1

Introduction

1.1 Context

Spoken language verification and speaker verification are pattern recognition tasks

that consist of recognizing, by computational means, the language spoken and the

speaker speaking in an utterance, respectively.

It should be noted that recognition, identification and verification are different tasks.

In identification, it is assumed that the utterance corresponds to one of a certain

set of N models, and the task consists on selecting one of the N models as the true

identity. A verification system, instead, must decide whether a certain utterance

contains speech of a target model or not. That is, each utterance is tested against

each model independently. Both tasks are recognition tasks. Even if this work

focuses on verification tasks, the term recognition will be used in the manuscript, as

its use is a common practice in the field.

A distinction should be made also between closed and open verification tasks. In the

case of a closed task, all the target models considered in the set are known, whereas

in open set tasks, “none of the target models”, that is, a model considering unknown

languages or unknown speakers is also considered in the set of models.

The main complexity of language and speaker recognition tasks comes from deal-

ing with undesired variabilities present in the utterances due to several factors: the

recording device, the transmission channel, environmental noises, mood or physical

conditions, differences among speakers in the case of language verification, different

1



2 Chapter 1. Introduction

languages or aging effects in the case of speaker verification, etc. All these, com-

monly summarized as channel variabilities, pose a strong difficulty for all the tasks

related to speech recognition, like Spoken Language Recognition (SLR) and Speaker

Recognition (SR). Extracting informative features robust against those variabilities

or designing modeling techniques capable of pattern after the desired variabilities,

while discarding the noisy ones, are the main focus of research in both tasks.

1.1.1 Structure of Recognition Systems

Recognition systems have a common basic structure, that can be outlined as follows.

First of all, it is necessary to record and organize a set of speech signals (or to reuse

an existing one) on top of which the system is going to be built. Data should be

divided into several sets, one for each of the main stages of SR/SLR system building

(see Figure 1.1): the training of the different components present in the recognition

system, the development and tuning of the parameters of the different modules, and

the evaluation, where system performance is measured on a test benchmark (an in-

dependent set of speech signals). Therefore, in general terms, training, development

and evaluation data are necessary. The assembling of the sets is a crucial step. Un-

balanced sets could pose several problems, like the over-training of the system for

certain types of variabilities (under-training for others) causing biased performances

and non-robust systems. In optimal circumstances, all the subsets would consist

of balanced data representative of the overall variability present in the application

scenario. Once the data is available, verification systems can be built.

The structure of the SLR/SR systems comprises four main modules (see Figure 1.1):

• Feature/token extractor. The first module of verification systems takes as

input the utterance (speech) and aims to concentrate in few and, as far as pos-

sible, independent (that is, uncorrelated) parameters/features the information

relevant to the classification task.

• Classifier. Built during the training stage, takes the features as input and

scores feature/token sequences with regard to the target models.

• Backend transformation. This module is assembled on the development stage.

It performs a transformation on the raw scores to normalize/calibrate them,

that allows us to use a single threshold for all the targets and makes the system

work at the desired application point.

• Decision maker. Provides a final decision (hard decision: accept/reject) for

each target model on top of the transformed scores.
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Figure 1.1: Structure of a recognition system.

In real systems, the distinction between the different modules is not always easy to

define, e.g. some classifiers applied on top of features can be considered as higher

level feature extractors, which are then used to fed a final classifier. Also, some clas-

sifiers provide normalized scores, suppressing the need of an extra backend parameter

estimation stage.

1.1.2 Evolution

All the technologies in the area of language and speaker verification have evolved

significantly in the last years. These progresses are due to different factors, that are

briefly described in the following paragraphs.

On the one hand, the great effort in database creation/enlargement has promoted

a richer benchmark for research, studies and system development. In this regard,

it is remarkable the contribution of the National Institute of Standards Technology

(NIST) by organizing a series of Language and Speaker Recognition Evaluations

(LRE and SRE, respectively). These evaluations, starting in 1996 in the case of

LRE and in 1997 for SRE, and held on a regular basis, have been —and still are—

outstanding benchmarks for the research community. The contribution of NIST
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is not limited to providing the databases, as the evaluations also evolve, posing

challenging tasks that encourage groups from the research community to continu-

ously improve their systems. The LRE datasets consist of spontaneous conversa-

tions collected through telephone (narrow-band) channels involving two speakers.

These benchmarks have consistently grown from evaluation to evaluation in terms

of amount of data, and have evolved regarding the target languages, ranging from

nine up to twenty four. Evaluation tracks involved signals of 3, 10 and 30 second

nominal durations. Regarding SRE, NIST databases started providing telephone

conversational excerpts recorded over telephone channels, and increasingly added

more kinds of recordings, including (in the last SREs) telephone data recorded over

microphone channels and conversational speech data from interviews recorded over

far-field microphones. The amount of trials has also been constantly increasing on

each new release, reaching volumes that comprise recordings of thousands of speak-

ers and millions of trials. As for language recognition, test segments are also divided

into three subsets, according to their nominal duration.

Other resources have also promoted language and speaker recognition research. The

KALAKA database was built for the Albayzin 2008 Language Recognition Evalua-

tion1, following the general approach of NIST LRE benchmarks, with some distinc-

tions: while NIST LRE signals consisted of spontaneous conversations collected over

telephone (narrow-band) channels, KALAKA datasets consisted of signals extracted

from (wide-band) TV shows, including both planned and spontaneous speech in di-

verse environment conditions involving a varying number of speakers. The target

language set focused on the 4 official languages spoken in Spain. The KALAKA2

and KALAKA3 databases, constructed for Albayzin 2010 and 2012 LREs, modi-

fied the scope of the evaluations. In the case of Albayzin 2010, an evaluation track

was included to evaluate recognition of signals recorded in noisy environments, and

included two more target languages. Albayzin 2012 pursued more ambitious chal-

lenges, as KALAKA3 consisted of audio data extracted from YouTube videos, and

added evaluation tracks containing target languages for which no training materials

were provided, increasing the amount of target languages up to ten.

The RATS dataset was designed to perform LRE and SRE in challenging scenarios,

focusing on noisy environments. RATS provides data retransmitted through 8 dif-

ferent communication channels covering target languages. The utterances consist of

selected signals from Callfriend and Fisher collections, previous NIST datasets and

new conversational telephone speech.

On the other hand, the increase in computational power has enabled the usage of

more complex algorithms for feature extraction and system modeling e.g. the use of

1The Albayzin evaluations were framed in the ”Jornadas en Tecnoloǵıas del Habla” organized
by the Spanish Thematic Network on Speech Technology (RTTH), and the ISCA Special Interest
Group on Iberian Languages (SIG-IL)
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supervectors as features or the training of variability matrices in high dimensional

spaces. Also, progress has been made from using a single phone decoder to obtain

1-best decoding based approaches, to using lattices in n-grams of different orders

extracted from multiple phone recognizers in parallel, to be used as features in

further complex modeling techniques.

Nowadays, Deep Neural Networks (DNNs) are gaining strength in all the stages of

SLR and SR systems, from feature extraction to variability compensation, model-

ing, calibration or even as multiple stages at once. The high computational power

attained by current number crunching technology and the big amount of available re-

sources seem to have reached the level needed to train complex and powerful DNNs,

which makes them likely to be the path to follow in future research.

1.1.3 Applications

Progress in the field has allowed the development of a wide range of systems and

applications for both spoken language and speaker recognition, which are becoming

more and more common in the technology surrounding us. The possible applications

include, among others:

• Phone service automation

• Phone call filtering

• Search and indexing of audiovisual resources

• Product customization

• Intelligence

• Forensics

• Speech preprocessing in multilingual dialog systems

• Speech preprocessing for suitable model/dictionary selection in data recovery

systems

• Security



6 Chapter 1. Introduction

1.2 Motivation and Objectives of the Work

This thesis started like any other journey, with a destination and motivation to

get there, a vision of the beginning of the path that should be taken, but only a

slight idea of the forthcoming route and the things that would be found along the

way. That destination, our former objective, was to build a competitive language

recognition system.

The first thing to do before traveling, before even being able to write a plan, is

to document about the things you can do, and the experiences others have had

while going there. After adequate documentation, the “must sees” clearly showed

up. I first toke part in developing a state-of-the-art language recognition system

using NIST LRE benchmarks [44]. This first work, that took me into the speech

technologies world, was framed in the Final Year Project and consisted on building

a GMM-MAP language verification system, using NIST 2007 LRE as benchmark.

The closeness of SLR and SR tasks pushed me into the speaker recognition field,

leading also to the construction of speaker recognition systems using NIST 2008

SRE [45], developed on the Master Thesis, which gave me some knowledge of the

sometimes subtle, other times significant differences between both tasks.

In the meantime, speaker diarization showed up. The application, complexity, com-

bination of several steps to build a system and the bunch of techniques caught our

attention. We spent almost a year struggling with tons of papers, software and dif-

ferent ideas, that led to the construction of a dot-scoring based system, that was

presented to the Albayzin 2010 speaker diarization evaluation [47, 48]. Even though

I remember that time as a truly exciting period, you cannot spread yourself too thin,

so the field was finally left aside to focus on language recognition again.

Albayzin evaluations provided an interesting benchmark to follow the research in

the language recognition field [128, 133–135, 152]. Related to Albayzin evaluations,

we also shared the experience of building databases. KALAKA2 and KALAKA3

[129, 130] were created for Albayzin 2010 and 2012 language recognition evaluations,

respectively [123, 127]. I could describe the database building episode as some place

every researcher in this field should visit once, just to realize that there is no need

(nor intention) to go back again.

The NIST 2011 LRE posed new challenges, focusing on new tasks like pairwise

language recognition, and promoted further research on the task, that led us to

individual system development, and collaborations with other research groups [109,

113, 114, 131, 132].
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The usual switching of NIST evaluations between language and speaker, kept us

working on the SR field, aiming to improve our systems, adapting them to the latest

techniques [46, 106–108].

Finally “The Idea” arrived: Most SLR approaches are based on either phonotactic

or acoustic features. The former aims to get information from the phoneme combi-

nations of each language, that is, tries to model the possible phone sequences allowed

or present in each language and uses that information to discriminate between ut-

terances. The latter, instead, divides the signal into short segments or frames (by

using different analysis windows) and performs a frequency domain analysis, with

the aim of modeling the spectral content of the signal.

SLR systems rely on combinations of these phonotactic and spectral feature based

systems, as it is widely accepted that both kinds of features provide complementary

information. However, it is not common practice to combine them into a single fea-

ture set, mainly because spectral features are computed on a frame-by-frame basis,

whereas phonotactic features provide segmental-level information, and thus there is

no clear way to mix them. Most authors build separate acoustic and phonotactic sys-

tems and fuse them at the score level to get best SLR performance [31, 133, 139, 148].

Our aim was to try to find a way to integrate phonotactic information in a frame-by-

frame feature base so that the features could be modeled in state-of-the-art spectral-

feature based systems.

Group meetings and brainstormings led to the Phone Log-Likelihood Ratios [50].

These features are the core of this thesis, as most of the research, experimentation

and developments are performed around this set of features.

Therefore, the main objectives of the work were (or ended up being):

• Studying state-of-the-art technology for SLR and SR fields.

• Obtaining a competitive language recognition system, by development and

optimization of the different modules it comprises.

• Study of the integration of spectro-acoustic and phonetic information into a

new set of features.

• Introducing the new features in state-of-the-art SLR systems.

• Analyzing their performance in the most relevant benchmarks.

• Development of a competitive Speaker Recognition System.

• Integration and optimization of the features as a possible way of introducing

phonotactic information in a SR system.
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1.3 Structure of the Manuscript

Even though the research work with this thesis has covered both, language and

speaker recognition fields, and extensive experimentation has been performed for

both tasks, this thesis will focus on Spoken Language Recognition (SLR), that

is, state-of-the-art technology (feature extraction techniques, modeling approaches,

scoring procedures...) and all the studies will be first presented for SLR tasks. Then,

the most important differences between SLR and SR tasks, and specific aspects of

the latter will be outlined. The rest of this report is organized as follows:

Chapter 2 introduces state-of-the-art techniques. First, the main structure and

modules of a standard recognition system are illustrated. Then, the evolution of

the most relevant datasets for SLR is outlined, specifically, NIST, Albayzin and

RATS benchmarks are described. Next, different kinds of features are listed, and

feature extraction methodologies are analyzed. Then, the main modeling techniques

and channel compensation methodologies are reported. Scoring, system backends

and fusion procedures are also addressed. Finally the evaluation measures used to

compare SLR system performance are defined.

The PLLR features are formally defined in Chapter 3. First, the origin of the fea-

tures and the computation process is presented, as first done in [50]. An extensive

study is then carried out, using the NIST 2007 LRE database, where different fea-

ture extraction parameters are optimized. Next, the performance of the proposed

approach, based on PLLR features and i-vector modeling, is compared to that of

several baseline systems: an acoustic approach, using the same modeling approach

(i-vector) based on MFCC-SDC features, and a phone-lattice-SVM phonotactic ap-

proach, which utilizes as source of information the same phone decoders used to

compute the PLLR features. This section presents results for three independent

systems, based on three different phone decoders, and the analysis of the statistical

significance of the results. After that, performance is studied also in other relevant

datasets: NIST 2009 and 2011 LREs and Albayzin 2010 LRE, to corroborate results

and explore the behavior of the features in other benchmarks and types of data [52].

The good performance attained by the system using PLLRs suggested that this set of

features could be a promising characterization to use for language recognition. Still,

the high feature vector dimensionality (compared to that of other frame-by-frame

spectral feature vectors), could pose a problem for some modeling approaches. Chap-

ter 4 addresses this issue by presenting a study on the reduction of dimensionality of

PLLR features using supervised and unsupervised techniques [51], pursuing a lower

feature dimensionality, while maintaining system performance. Then, making use

of the compact representation of PLLRs, the integration of larger spectro-temporal

information (also common in other spectral features) is analyzed [57].
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The dimensionality reduction of the features, and the results attained with the com-

pact representations, led to a multidimensional analysis of the feature space. Chapter

5 introduces this study, developed on NIST LRE benchmarks, revealing that PLLR

features show a bounded distribution. An approach to project the features into a

different space is presented, which enhances the information retrieved by the system

[54, 56]. Thanks to a collaboration carried out during an internship done in the

Brno University of Technology, the usage of this set of projected features is then

extended to the RATS database, revealing the high performance of the features for

short signals recorded in noisy environments [116].

The study is extended to speaker recognition in Chapter 6. This chapter is organized

with a structure that resembles that followed in previous chapters for SLR. First, the

differences between SLR and SR tasks are outlined, and state-of-the-art techniques

for SR are described making emphasis on those not shared with SLR. Then, the

application and usage of PLLR features on SR tasks is explained in detail. The work

presented covers the optimization of PLLR features for SR and analyzes results on

NIST 2010 and 2012 SRE datasets [53, 55].

Finally, conclusions and open issues to be addressed in future work are discussed in

Chapter 7.

Appendix A provides details about database configuration, covering all the databases

used in the experiments reported in this thesis: NIST 2007, 2009 and 2011 LRE,

Albayzin 2008 and 2010 LRE, and NIST 2010 and 2012 SRE.

In Appendix B, the outcome of the participation in international challenges is out-

lined, including brief system descriptions and the results attained in NIST 2010

SRE [107], NIST 2011 LRE [113], NIST 2011 SRE analysis workshop [46], NIST

2012 SRE, [49], and MOBIO 2013 [84].





Chapter 2

State of the Art

This chapter first introduces the main datasets used in the SLR research area. Then

the techniques employed in state-of-the-art language recognition systems are covered.

The most useful and popular methods are described covering feature extraction,

modeling, channel compensation, scoring, backend and fusion estimation. Finally,

the main performance metrics used for system evaluation are formally defined.

2.1 Datasets

As noted before, the quantity, quality and variability of the available data for system

training is of the utmost importance in the area of speech processing and language/

speaker recognition. There are various resources available for research in the spoken

language recognition field. In this section, we provide details of the most relevant

benchmarks for SLR.

2.1.1 NIST LRE Benchmarks

The National Institute of Standards Technology (NIST) LRE datasets [3] are, no

doubt, the most relevant benchmarks for the development and evaluation of SLR

technology. NIST LRE evaluations, held first on 1996 and every two years from

2003 to 2011 set not only baseline benchmarks for the research community, but

have also served as reference datasets to present and evaluate emerging technologies

in the SLR field. The datasets comprise low-band (8kHz) signals, mainly featuring

11
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conversational telephone speech. In the most recent datasets (starting on 2009), data

coming from Voice of America (VOA) radio broadcasts was also included (although

limited to signals assessed as telephone bandwidth speech). Evaluations featured

three main evaluation tracks, for different nominal speech segment durations of 3,

10 and 30 seconds.

• Starting on 1996, NIST presented a database with a set of twelve languages

(where three of them included two dialects each). The dataset comprised

a total amount of 20 conversations per language for training, 15 hours for

development and 18 hours for evaluation (including 4560 test segments).

• The 2003 benchmark increased the amount of data with regard to that provided

in 1996. The signal durations, evaluation conditions and possible evaluation

tracks were the same as for the 1996 benchmark. The set of target languages

was also maintained, but without dialect distinctions. The dataset comprised

a total amount of 20 conversations per language for training, 30 hours for

development and 3840 test segments (about 17 hours).

• The 2005 dataset [95] focused on a set of 7 languages (where two of them

included two dialects each). The dataset consisted of 20 conversations for each

target language. The development data consisted of the 1996 development

and evaluation dataset, plus the 2003 evaluation segments. The evaluation set

increased significantly, amounting to around 7550 test segments.

• In 2007, the dataset was significantly extended, increasing the number of target

languages to 14, and included also several dialects, amounting to 26 different

categories. Moreover, non-target language evaluation data was also provided

[96] for a new open-set verification track. In this evaluation, the number of

participating sites raised from the previous 12 up to 21, revealing an increas-

ing interest on the field. All the data provided for previous evaluations was

used for training or development purposes. Additionally, 20 conversations (40

conversation sides) were provided for target languages not present in previous

datasets. Evaluation data amounted to 7575 test segments.

• The 2009 NIST LRE datasets increased the number of target languages up to

23. For this new benchmark, data coming from VOA radio broadcasts was

also included, in addition to conversational telephone speech [93]. NIST 2009

LRE data comprised data from previous evaluations, plus VOA data, which

provided non-audited training data, plus 80 30-second audited segments for

each target language. Evaluation data amounted to 14059 test segments.

• The NIST 2011 LRE differed from previous evaluations in that it focused on

language-pair verification conditions. That is, in previous NIST LREs, given
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a speech signal, the system should give a hard decision on whether the target

language was spoken in the segment considering also a set of (multiple) non-

target languages. In this new task, instead, the system would solely focus

on two target languages for each trial. The NIST 2011 LRE trials considered

language pairs from a set of 24 target languages [69]. Training and development

data for NIST 2011 LRE reused data from previous evaluations, plus a set of

100 30-second audited segments per language for languages not present in

preceding datasets. The evaluation dataset amounted to 29511 test segments.

2.1.2 Albayzin LRE datasets

Following the spirit of NIST evaluations, Albayzin LREs started taking place in

2008 [125]. The Software Technologies Working Group (GTTS) [7] from the Uni-

versity of the Basque Country built a dataset named KALAKA [126] to support a

SLR evaluation focused on the official languages in Spain. The database featured

an important difference with regard to NIST 2007 LRE: speech in KALAKA was

extracted from wide-band (16kHz) TV shows. The datasets of KALAKA included

planned and spontaneous speech in various environmental conditions.

• KALAKA was designed to provide data to build systems for four target lan-

guages. It also provided data from other four out-of-set languages. As for

NIST datasets, development and evaluation signals featured fixed durations of

30, 10 and 3 seconds. The dataset amounted to around 9 hours of training

data per target language plus around 1800 speech segments for development

and another 1800 for evaluation.

• KALAKA-2 [129], built for the next Albayzin 2010 LRE [128], is an exten-

sion of the previous KALAKA dataset, including two new target languages

and two different training subsets of clean and noisy speech segments. The

whole database amounts to 125 hours of speech, with more than 10 hours of

clean speech and more than 2 hours of noisy/overlapped speech (recorded in

noisy background environments) per target language. Two sets of around 1600

speech segments each were provided for development and evaluation.

• For the last Albayzin language recognition evaluation held on 2012 [123], a

new application domain was selected, moving from TV broadcast speech into

any kind of speech found on the Internet. In KALAKA-3 [130], data from

KALAKA-2 was used for training purposes, amounting to around 108 hours of

speech. Two new conditions were included, Plenty with six target languages

for which training data was provided and Empty with four target languages for

which no training was provided. Development and evaluation data consisted
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of similar sets of between 100 and 200 audio segments (30-120 second long)

per target language (plus segments for the eleven OOS languages) extracted

from YouTube videos.

2.1.3 RATS

As it can be seen on the descriptions of previous datasets, while more competitive

technology emerged, datasets also evolved into more challenging scenarios, involving

highly confusable languages, or noisy environments in order to pose new challenges.

The RATS dataset [99] was designed to perform LRE in challenging scenarios, fo-

cusing on noisy environments with evaluation tracks for speech segments of 120, 30,

10 and 3 seconds. RATS provides data for 5 target and 10 non-target languages,

retransmitted through 8 different communication channels. The Linguistic Data

Consortium (LDC) provided data for the RATS program, which consisted of se-

lected signals from Callfriend and Fisher collections, previous NIST datasets and

new conversational telephone speech. The data provided for training and develop-

ment purposes included only signals of 120 seconds nominal duration.

2.2 Feature Extraction

In the feature extraction stage, the parameters that could better characterize the

target languages are selected and extracted from the speech utterances. Feature

selection and extraction is a broad and fruitful field of research in SLR. As a result,

there is a wide range of features to parameterize speech.

Features can be categorized depending on several factors. A possible way of grouping

them could be based on the type of information they convey, as shown in Figure 2.1

[37, 160]:

• Phonetic, spectral and acoustic features obtain information of the audio

signals in form of speech units, that is, frame by frame based information,

extracted by means of short-time (interval) windows. Languages have their

own set of speech units, or phonemic inventory, which defines or summarizes

the sounds covered by the language. It is, therefore, straightforward to see

why the identification of the phonemes contained in an audio signal could help

identifying the language spoken in an utterance. Spectral/acoustic features

aim to extract information based on the principles of human sound perception.
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Figure 2.1: Classification of features for spoken language recognition.

• Prosody features gather information about tone, rhythm, pitch, stress, etc.

These characteristics can be useful not only for affective computing (emo-

tion recognition), but also to discriminate between languages. For instance,

Isochrony can be a useful discriminative feature, as languages can divide time

in equal portions at different levels, so that, some make the duration of every

syllable equal, others divide time so that every mora —a unit that weights the

duration of segments that conform a syllable— is equal, and others control the

time between two stressed syllables. Some languages have also lexical stress

rules, like the ones with fixed stress, which emphasize always the syllable that

is placed in the same position in every word (first, penultimate...); other lan-

guages stress different syllables according to the structure of the word (regular

stress). Tone can be not only a emotional clue, but can also be a distinctive

feature to differentiate between words in tonal languages.

• Phonotactic features compute statistics on top of phoneme-level features,

making counts of phonemes, or counts of sequences of phones (n-grams), build-

ing this way characteristics covering a larger temporal context. The usefulness

of these features can be easily guessed, given that even languages which could

share a phonetic inventory would have different allowed phoneme combinations

to build words.

• Morphology features refer to the analysis of morphemes and lexemes and

the way these are used to build words in languages. Building a system which

is able to identify the words contained in an audio signal would make easy
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the language recognition task, but at a high cost, given that large language

dependent dictionaries would be needed for these approaches to be applied.

• Syntax features study the way phrases are built out of words. Some tasks

require the use of syntax-based features, such as large vocabulary continuous

speech recognition.

All these features provide benefits for language recognition, yet, the most popu-

lar approaches combine spectral and phonotactic features, given that these features

are not only easy to extract compared to prosodic, morphological or syntax-based

features, but also attain good performance. Furthermore, commonly referred to as

low-level and high-level features, they have shown to carry complementary informa-

tion [22] [133].

Several works have also explored the use of prosody and other features [76] [103]

[97]. These systems, though not being that competitive by themselves, provide

complementary information to the systems based on acoustic or phonotactic features.

In this section, we will give an overview of the feature extraction stage, starting with

signal processing basics, giving some details about the voice activity detection stage

and providing details about the extraction processes of the most common low and

high level features for spoken language recognition.

2.2.1 Signal processing

Signal processing is a field of research that studies the techniques used to process,

transform and analyze all kind of physical signals (acoustic, electromagnetic, etc.).

The first stage of any language, speaker or speech recognition system is the conver-

sion of the input utterance into a sequence of parameters with relevant information

for the recognition task, which is based on different speech audio signal processing

techniques.

Speech processing states that some speech properties are short-time varying, or

quasi-stationary in short time intervals (of about tens of miliseconds) [13]. Besides,

it is also known that the human auditory system analyses signals in the frequency

domain. Many feature extraction methods, therefore, rely on short time analysis

to study signals, making use of frames or windows through the signal to extract

information. This process is known as signal sampling or windowing. After that,

the signal is transferred into the frequency domain by means of the Discrete Fourier

Transform (DFT).
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The choice of the window length (typically from 20 to 30 ms. for speech appli-

cations) is a compromise between the stationarity assumption and the frequency

resolution attained afterwards. The window shift is usually chosen to obtain over-

lapped windows (with frame rate of around 10 ms.) to avoid the information loss

between frames. Some other issues arise as a consequence of using short analysis

windows: The DFT assumes that the analyzed signal is periodic in the considered

frame. Computing the DFT of signals that are non-periodic in the analysis window

causes an effect known as leakage, which distorts the frequency components of the

signal. Different types of windows have been studied in the literature with the aim

of optimizing the spectral analysis of signals, reducing leakage while maintaining a

low variance. Hamming is the window most commonly applied, though many others

have been explored: Dirichlet, triangle, Hanning, Blackman, etc. [71, 115].

Another important concept in speech processing is the so called Cepstrum, which is

the spectrum of the logarithm of the power spectrum of a signal [13]. The application

of the logarithm in the frequency domain provides a smoothed representation of the

signal spectrum, making it possible to characterize the articulation (vocal tract

configuration) of the produced sound. DFT components are typically averaged in

a bank of filters scaled according to a perceptual scale, so that a set of perceptual-

frequency energies are obtained. Finally, a Discrete Cosine Transform (DCT) is

applied in order to suppress correlations among filter energies. Cepstrum is broadly

used to characterize speech, as it provides a way to separate in the frequency domain

the components of the speech signal corresponding to (voiced or unvoiced) excitation

and vocal tract filter response (which is the relevant information).

2.2.2 Voice Activity Detection

Voice Activity Detection (VAD) is an important and challenging process at the

feature extraction stage, that deals with the problem of discriminating between

speech and non-speech (silent or noisy) regions of the audio signals. An ideal VAD

should be robust for a wide range of Signal to Noise Ratio (SNR) conditions and for

different types of noises: white, stationary, impulses, etc.

VAD can be performed in different ways. The simplest techniques are based on the

energy content (at the frame level) of speech signals. More sophisticated VAD tech-

niques use other frame-level characteristics, like zero crossing rate, cepstral features,

formant shape, or even phonetic features as in [18, 77], where a phonetic recognizer

was used to identify silence or noisy frames in order to discard them. Speech and

noise statistical models [35, 140], or long-term signal analysis methods [67] have also

been widely explored.
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2.2.3 Spectral and Acoustic low-level Features

Low-level features model languages with information taken from quasi-stationary

spectral characteristics of the audio signal, and their evolution over time. These

features are easy to extract and provide a good characterization of the language,

making them the most used features in the literature and in applications.

There is a considerable amount of spectral and acoustic features that have been

used for speech and/or speaker recognition, but that have not been widely explored

for language recognition tasks: gammatone frequency cepstral coefficients, linear

frequency cepstral coefficients, frequency domain linear prediction, etc. In [158]

some of these features are collected and tested in a SLR system, and some further

innovative features or variations of the previous are also presented. In this Section,

we will describe the most used features in SLR literature.

Mel Frequency Cepstral Coefficients

Among acoustic features, the Mel-Frequency Cepstral Coefficients (MFCC) are one

of the most common representations for language, speaker and speech recognition

[18, 139]. The MFCC feature computation was first proposed in [38]. This feature

extraction procedure averages the spectral energies in frequency bands defined ac-

cording to the human perception of differences in frequency, the so called Mel scale.

The Mel scale defines an approximately linear scale for frequencies below 1000 Hz,

and a logarithmic scale for frequencies above it. This way, a higher resolution is

provided for low frequencies.

The full extraction process can be described as follows: First, audio signals are

sampled using typically 20-30 ms Hamming windows at a 10 ms rate. Next, a DFT

(in fact, a Fast Fourier Transform, FFT) is applied to get the representation in

the frequency domain. Right after, Mel filtering [78] is applied to get the spectral

energies around 20 Mel-scaled frequency bands and logarithms of the output of the

filters are computed. Finally a DCT is applied, which provides the representation

known as MFCC.

Dynamic coefficients

Several works have shown empirically that the use of information relative to the

evolution of acoustic features is effective in language recognition. Therefore, dynamic

coefficients are usually computed on top of MFCC features.
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First-order dynamic coefficients are computed as defined in [156]:

∆f(t) =

∑D
d=1 d [f(t+ d)− f(t− d)]

2
∑D
d=1 d

2
(2.1)

where f(t) is a feature at time t, and 2D + 1 is the size of the regression window.

Second-order dynamic coefficients (∆∆) are computed using Eq. 2.1 on first-order

dynamic coefficients.

Shifted Delta Cepstrum

SDCs provide another way of making use of larger temporal context information

in the features. Unlike MFCC+∆+∆∆ feature vectors, which carry information of

static, first and second order dynamic characteristics, SDCs carry only static and

first order dynamic information, computed over a certain number of surrounding

windows, centered on the analysis window. That is, SDCs characterize the language

by the evolution of local variations of the spectrum around the analysis window.

Shifted Delta Cepstrum (SDC) computed on top of MFCCs, is also state-of-the-art

in language recognition [18, 139, 149]. SDCs are specified by four parameters N-d-P-

k [149]: N is the number of coefficients from which derivatives are computed at each

frame, d determines the size of analysis windows (consisting of 2 · d + 1 frames) to

compute the derivatives, P is the shift (number of frames) between two consecutive

analysis windows and k is the number of analysis windows whose delta coefficients

are concatenated to form the final feature vector. Figure 2.2 shows a diagram of the

parameters for SDC feature computation.

t-P t t+P t+P*k/2t-P*k/2

t-d t+d t+P-d t+P+dt-P-d t-P+d t+P*k/2-d t+P*k/2+dt-P*k/2-d t-P*k/2+d

Figure 2.2: Window parameter definitions for the estimation of the first order
deltas that conform SDC features.

After the computation of dynamic coefficients, frames marked by the VAD module

as silence or non-speech are removed.

Perceptual Linear Prediction Features

Another common characterization (specially in speech recognition tasks) is the one

consisting of Perceptual Linear Prediction features (PLP) [73], which are based
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on several concepts related to the critical band masking property of the human

auditory model in order to estimate the signal spectrum. Given an audio signal,

the PLP estimation algorithm first computes the power spectrum, then warps the

frequency axis using the Bark scale. Next, it performs a convolution with a critical-

band masking curve and down-samples the signal, preemphasizes the result and

applies an intensity-loudness warping. Finally, auto-correlation method of all-pole

spectral modeling is applied, which gives autoregressive coefficients, that can be

further transformed to obtain parameters like cepstral coefficients.

2.2.4 Phonetic and Phonotactic high-level Features

Unlike spectral features, high level features are more robust against channel and

noise variabilities. However, they are not easy to compute, and large amounts of

data are necessary to estimate them. Among high level features, the most common

representations are based on the information provided by phone decoders [66] [26]

[146] [112].

Phone decoders

Phone decoders need a large amount of labeled data (determining the phonemes

that are present in the speech) to train the models for each of the phones of their

phonetic inventory [26]. Once they are trained, phone decoders are able to take

an input sequence of acoustic observations X, and provide an acoustic posterior

probability of each state s (1 ≤ s ≤ S) of each phone model i (1 ≤ i ≤ N) at each

frame t, p(i|s, t). This phone-state posterior probabilities are later used to obtain

1-best phone decodings, or lattices (see below).

Phone decoders can rely on different features, like the MFCCs or PLPs introduced

above, usually augmented with Dynamic coefficients or other techniques to obtain

information for larger temporal contexts [66, 137]. Once the features are obtained,

the input frames are scored with regard to the phonetic units of the phonetic inven-

tory. This can be done using different modelings: GMMs, HMMs, Neural Networks

or hybrid models are commonly used in this step.

Phonemes or speech units, usually span several frames. The scoring at the beginning

and end of each speech unit is usually worse than the one attained in the middle

frames. With the aim of improving the acoustic modeling of the phonemes, phone de-

coders are usually trained to provide phone-state posteriors, which represent shorter

units and allow a better acoustic modeling of the speech.
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BUT TRAPs/NN phone decoders

Some of the phone decoders more used in the literature are the open software Tempo-

ral Patterns Neural Network (TRAPs/NN) phone decoders, developed by the Brno

University of Technology (BUT) [137]. These phone decoders rely on multilayer

perceptron NN, and have the following structure:

First audio signals are sampled using 25ms Hamming windows at a 10 ms rate. Mel

filter bank energies are then estimated, and TRAP feature vectors are computed

for each critical band, which module the evolution of the energy values. Mean and

variance normalization is applied to the vector, which is then Hamming-windowed,

and normalized again with regard to the training set. Each of these vectors is the

input to a NN classifier, which estimates phone posterior probabilities for each phone-

state model and critical band. The outputs of the classifiers feed another NN, known

as merger, which combines the outputs into a single posterior probability vector per

frame.

The BUT TRaPs/NN phone decoders were developed for Czech (CZ), Hungarian

(HU) and Russian (RU), feature 45, 61 and 52 phonetic units respectively, and

provide three posterior probabilities per phone unit and frame, that is, they are

implicitly using three-state phonetic models.

The main training features of these decoders are:

• Czech Decoder (CZ) - 8 kHz, trained on the Czech SpeechDat(E) Database,

containing 12 hours of speech from 1052 Czech speakers (526 males, 526 fe-

males), recorded over the Czech fixed telephone network.

• Hungarian Decoder (HU) - 8 kHz, trained on the Hungarian SpeechDat(E)

Database, containing 10 hours of speech from 1000 Hungarian speakers (511

males, 489 females), recorded over the Hungarian fixed telephone network.

• Russian Decoder (RU) - 8 kHz, trained on the Russian SpeechDat(E) Database,

containing 18 hours of speech from 2500 Russian speakers (1242 males, 1258

females), recorded over the Russian fixed telephone network.

1-best Decoding

In the early times of phone decoder based approaches, given an utterance, a phone

decoder (trained on one or more languages) would provide the most likely phone

sequence according to its phonetic inventory, that is, the most likely sequence of

phones.
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These sequences are then normally used to build n-grams, that is, sequences of N

phones and counts of n-grams are used as features:

count(ŵi, wi|Θ∗) (2.2)

where ŵi = wi−(n−1), ..., wi−1, and wi is the phone at position i of the optimal

sequence of phones Θ∗.

Phone Lattices

In more recent phone decoder based approaches, phone lattices were introduced.

Lattices model speech utterances as graphs, where nodes represent points in time

and each arc corresponds the a phone hypothesis and its corresponding acoustic

score. With lattices, instead of just taking the most likely phone sequence, a sum-

mation is performed over the different phone sequences [66]. Figure 2.3 shows the

representation of a phone lattice and the 1-best decoding output for a single utter-

ance.
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Figure 2.3: Representation of a phone lattice of a utterance using a phone
decoder of 5 phone units. The 1-best decoding output is marked as the optimal

path in the lattice.

It has been experimentally shown that lattices provide a better way of estimating

the n-gram probabilities than the 1-best decoding, that is, the information retrieved

by summing the likelihoods over all the paths in the phone lattice is more robust

than that obtained from the best path.

Aiming to maximize the information carried out by the features, works in the lit-

erature have widely explored different n-gram orders. The increment in the n-gram

order enhances system performance, as the extracted higher order n-grams carry

more language-specific information, but entails a higher computational cost (as the

number of features grows exponentially with n) which may make the modeling of the
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features intractable. Techniques dealing with this fact normally use n-gram selection

methods, discarding low-frequency n-grams (based on counts made on training sets)

[121].

2.3 Modeling

Modeling techniques can be classified with regard to different criteria. Based on

the training methodology, models can be classified as either generative or discrim-

inative. The former estimates intra-class variability whereas the latter searches for

the boundaries between classes. Besides, models can be also seen as parametric or

non-parametric. In parametric models, each class is assumed to be modeled by a

specific probability density function and model parameters are estimated so as to

best fit the probability distribution. Non-parametric models, instead, compare fea-

ture vectors directly and the degree of similarity between them is used as a metric

to decide whether they belong to the same class or not.

In this section, we will present the modeling techniques for language recognition that

stand out as more popular in the literature.

GMM-UBM

In low-level acoustic systems, the target language is modeled with information

taken from the spectral characteristics of the audio signal. In the early times of

acoustic-based approaches for language recognition, though these systems provided

advantages in terms of computational complexity, performance was not as good as

that attained by phonotactic systems [159]. The approach known as Gaussian Mix-

ture Model / Universal Background Model (GMM-UBM) previously used in speaker

recognition systems [120], was first introduced for language recognition in [155] using

Mel-Frequency Cepstral Coefficients as features.

GMM are widely used in speech, speaker and language verification systems. A GMM

is a generative model that represents the acoustic characteristics of the training set

by means of a probability density function defined as a weighted sum of Gaussians,

that are defined in the vector space of the acoustic parameters. A GMM consists

of a mixture of K D-dimensional Gaussians. A vector w defines the weight of each

Gaussian component in the mixture, and each Gaussian is modeled by a vector of

means µµµ and a D × D covariance matrix Σ. The probability of the input feature

vector f , for a GMM model M, is given by:
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p (f |M) =

K∑
k=1

wk
1

(2π)
D/2 |Σk|

exp

{
−1

2
(f − µk)

T
Σ−1
k (f − µk)

}
(2.3)

There are different approaches and algorithms to estimate the parameters of these

statistical models. Among them, maximum likelihood based Expectation Maximiza-

tion (EM) [42] has been widely used in the literature.

The EM algorithm aims to maximize the likelihood of the observed data set with re-

gard to the different parameters (means, covariances and weights of the components)

of the model M. For that purpose, the parameters are first initialized (either ran-

domly, or using the K-means algorithm or another reasonable approach). In the E

step, the algorithm estimates the posterior probabilities of the responsibilities given

the parameters, that is, it estimates the responsibility that each component k takes

for generating the data. Then, in the maximization step, the model parameters are

reestimated with regard to those responsibilities. Finally the log-likelihood is eval-

uated to check if it has reached the convergence criterion; if not, the E-M steps are

repeated until convergence or a certain number of iterations are reached.

In the GMM-UBM approach, a universal GMM is trained with data involving a

relatively high number of spoken languages (which may or may not include target

languages), to get a model that covers all the variability that we may expect in

the input utterances of the SLR application. Models of target languages are then

trained either by EM, or by Bayesian adaptation, Maximum A Posteriori (MAP)

[65, 120, 155], which presents the advantage of requiring less training data for each

target model.

MAP consists of adapting an universal model to the selected data —a specific target

language in SLR—. The algorithm combines the parameters of the UBM with

the ones estimated from the new data by means of a relevance factor. The factor

determines the degree in which the parameters will be transformed into the new

ones: a big learning factor would require a higher exposure to parameters in the

new data, for the component of the UBM to be adapted. MAP adaptation can

retrain means, weights and covariances [120]. In most approaches only the UBM

mean vectors are adapted for each target model. First, training samples are used to

compute mean and weight expectations:
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nk =

T∑
t=1

P (k|ft, λ) (2.4)

Ek(f) =
1

nk

T∑
t=1

P (k|ft, λ)ft (2.5)

where ft is the input feature vector, λ are the parameters of the GMM, and P

denotes the posterior probability (this estimation is the same in the E step on the

EM algorithm). Mean adaptation is performed following:

µ̂k = αkEk(f) + (1− αk)µk (2.6)

where αk is the adaptation coefficient, defined as:

αk =
nk

nk + r
(2.7)

where r is the relevance factor.

The concatenation of MFCC-SDC features in [149] under the GMM-UBM modeling

approach proved to be a successful way of making use of acoustic information for

SLR.

Support Vector Machines

In the mid 2000 years, Support Vector Machine (SVM) modeling was introduced for

acoustic SLR [30] using MFCC-SDC as features.

Support Vector Machines, unlike GMMs, are discriminative models that try to find

the boundaries between two classes. SVMs search for the separating hyperplane

h(x) defined as:

h(x) =

N∑
i=1

αiciK(x,xi) + d (2.8)

where K(·, ·) is a kernel function; ci = ±1 corresponds to the class label; αi are

weights so that
∑N
i=1 αici = 0 and αi > 0; xi are the support vectors obtained from
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the training data and d is a learning factor. SVMs must consider that classes might

not be linearly separable. For that reason, the input data is mapped into a high

dimensional space by b(x). The Kernel must satisfy Mercer’s condition, which can

be expressed as K(x,y) = b(x)tb(y). The value of h(x) above or below a given

threshold will determine the class that corresponds to the input data.
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h(x)=0 
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Margin 

Figure 2.4: Two dimensional representation of a SVM

The SVM searches for the hyperplane that maximizes the margin between classes.

Geometrically, the margin is the smallest distance between the training data of each

class and the hyperplane (see Figure 2.4). Therefore, the metric used in each case

will condition the solution found for the hyperplane.

GMM-SVM

In [27], GMM supervectors were introduced for a SVM-based speaker recognition

system, and [33] extended this work for spoken language recognition. GMM super-

vectors are built by concatenating Baum-Welch statistics which map the utterances

into a high dimensional space.

Given a GMM G ≡ {ωk,µµµk,ΣΣΣk|k = 1..K} consisting of K Gaussians in a D-dimen-

sional space, with diagonal covariance matrices ΣΣΣk, the zero order statistics are

computed as:

nk =
∑
k

γk (t) (2.9)
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where γk(t) = P (k|ft,G) is the posterior probability of the component k of the GMM,

given the parameters and the feature vector ft at time t.

The first order statistics are defined as follows:

xk =
∑
k

γk(t)Σ
− 1

2

k (ft − µk) (2.10)

the parameter vectors n = [

D︷ ︸︸ ︷
n1, . . . , n1, ...,

D︷ ︸︸ ︷
nK , . . . , nK ]′ and x = [x1, . . . ,xK ]

′
are

known as the zero and first order sufficient statistic supervectors, respectively. In

the GMM-SVM approach, these MAP-adapted GMM supervectors are used to train

the SVM classifiers.

Phonotactic approaches

Assuming 1-best decoding and given L models for L target languages and the most-

likely sequence of phones Θ∗ provided by a phone decoder, this approach aims to

find the target language which maximizes [29]:

L∗ = argmax
L

log p(Θ∗|L) (2.11)

= argmax
L

1

N

N∑
i=1

log p(wi|wi−(n−1), ..., wi−1, L) (2.12)

where w1, ..., wN are the N phones contained in Θ∗ and n is the n-gram order. The

joint probability of the sequence of phones can be also expressed in terms of n-gram

counts as follows:

p(ŵi, wi|Θ∗) =
count(ŵi, wi|Θ∗)
J∑
j=1

count(ŵj , wj |Θ∗)
(2.13)

where J are all the unique n-grams in the utterance. Therefore, using this notation,

under the 1-best decoding, this approach aims to find the language that maximizes:
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L∗ = argmax
L

sL(Θ∗) (2.14)

sL(Θ∗) =
∑
i

p(ŵi, wi|Θ∗) log p(wi|ŵi, L) (2.15)

In the case of using phone lattices, the summation involves many different unique

ŵw n-grams for which the expected likelihood is computed as an average over all

possible paths in the lattice [29]:

EW [sL(Θ)] =
∑
ŵw

EW [p(ŵ, w|Θ)] log p(w|ŵ, L) (2.16)

Systems using phone decoders as feature extractors have relied on different ap-

proaches, either using a single Phone Recognizer followed by Language Modeling

(PRLM) (see Figure 2.5) or using multiple Parallel Phone Recognizers followed by

Language Modeling (PPRLM), in which several language dependent phone recog-

nizer based systems are fused, as shown in Figure 2.6.
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Figure 2.5: Diagram of a PRLM system

Phone-lattice-SVM

SVMs have also been used under the approach known as Phone-lattice-SVM, com-

bining phonotactic features with SVM classifiers [26].

The phone lattice produced by a decoder i is stored for each target language lj , then

feature vectors are built from expected counts of phone n-grams. A SVM model

ψ(i, lj) is estimated on the outputs of the phone decoder i for the training dataset,

taking j as the target language. Variations of this approach have been recently

proposed leading to improved performance [112, 146].
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Figure 2.6: Diagram of a PPRLM system

At the feature level, several methods have dealt with dimensionality reduction issues

to try to decrease the feature n-gram order using different criteria depending on

SVM-modeling parameters, feature discrimination merits, projections, or dynamic

selections [110, 121, 147].

2.4 Channel Compensation

The term channel compensation comprises all the techniques that try to suppress

or minimize the undesired variabilities contained in speech signals. In the case of

spoken language recognition tasks, these variabilities are caused (among others) by

environmental noises, variabilities introduced by different recording devices, trans-

mission channels or speakers, and are usually summarized as channel variabilities.

Channel variabilities pose nowadays one of the main difficulties for system perfor-

mance. Eliminating the undesired variabilities while keeping the desired features for

language modeling is a complicated task, which is addressed at different stages of

the recognition system. This section describes the main state-of-the-art techniques

applied to solve channel variability issues.
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Feature-level channel compensation

The main disadvantage of spectral features is their sensitivity to noise and channel

variabilities. Several compensation techniques have been applied, to minimize these

undesired effects.

Cepstral Mean Subtraction (CMS) deals with slow varying distortions, like station-

ary noises and the effects caused by the use of stationary filters, like the type of

microphone, the distance to the microphone and the acoustics of the area where the

recording is made. The technique consists on computing the mean of each cepstral

coefficient on the signal file and subtracting it from the corresponding coefficient

[89, 136]. Another variability compensation technique applied on the feature ex-

traction stage (more common in speaker recognition) is RASTA filtering [74]. The

technique assumes that channel characteristics have little frequency variations over

time, so their spectral elements are in the low-frequency area. RASTA applies a

bandpass filtering to each frequency channel to get rid of those variabilities. An-

other commonly applied technique, called Feature Warping [104], maps the param-

eter probability density function to a normal distribution, which makes the features

more robust to linear channel effects.

Nuisance Attribute Projection

A family of compensation techniques is based on the idea that channel mismatch,

environmental noise and other undesired variabilities are contained in a lower di-

mensional subspace. Methods based on this hypothesis use labeled data (with ei-

ther language or condition dependent labels) to estimate the different distortions or

channel variabilities, and then project features or compensate the models in order

to remove those undesired effects.

Nuisance Attribute Projection (NAP) [141] was one of the first methods proposed

based on this idea. NAP estimates the channel factors on the SVM or supervector

spaces, and projects them out leading to features that are more resistant to channel

effects [122].

NAP requires data from several sessions for each language. Given the language l

and a data matrix with feature vectors f recorded over different conditions, NAP

tries to minimize the following function:

F (P) =

N−1∑
i=1

N∑
j=i+1

Wij ||P(b(fi)− b(fj))||2 (2.17)
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where N is the number of input signals, W is a matrix where Wij = 1 if fi and

fj belong to the same language, and 0 when feature vectors belong to different

languages, and P is the projection matrix that is assumed to follow the form:

P = I−XXt (2.18)

Eigenchannel Compensation

After NAP, channel compensation techniques at the modeling stage started to gather

strength in SLR. Methods previously applied to speaker recognition like eigenchannel

adaptation [82] were afterwards successfully applied to spoken language recognition

[32] [75] [34] [21].

Under this approach, eigenchannels are estimated and used to move the supervectors

in the maximum variability direction, with the aim of adapting the models to the

test data.

In order to perform eigenchannel compensation, first, an uncompensated supervector

is computed for each utterance:

m = (rI + diag(n))
−1

x (2.19)

where I is the identity matrix, diag(n) is a matrix of dimension D × K with the

supervector n in the diagonal and r is an heuristic relevance factor.

Language variabilities (not willing to be modeled) are removed from the supervectors

by computing the mean of the training signals belonging to the same language.

Then the covariance matrix of the training samples is used to compute the most

relevant Q eigenvectors by means of Principal Component Analysis (PCA). Then

the eigenchannel matrix W is built by concatenating each eigenvector vi multiplied

by its corresponding eigenvalue λi.

W = [v1 ·
√
λ1 v2 ·

√
λ2 . . .vQ ·

√
λQ] (2.20)

When data is labeled with regard to the type of recording or transmission channel,

different eigenchannels can be estimated depending on the channel variability to be

modeled. In that case, the final W matrix is formed by the concatenation of the

different sub-matrices.
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Once the eigenchannels are computed, these can be used to perform the compensa-

tion in the sufficient statistics space, as follows:

x̂ = x− diag(n) ·WL−1Wtx (2.21)

where L is defined as:

L = I + Wtdiag(n)W = I +

K∑
k=1

nk ·Wt
k ·Wk (2.22)

Finally, the compensated supervectors are computed by:

m̂ = (rI + diag(n))
−1

x̂ (2.23)

These compensated supervectors can be then either used to feed a SVM, or directly

applied for linear scoring or used to feed other classifiers.

Joint Factor Analysis

The channel compensation approaches presented so far focused on modeling the

channel-related part of the speech signal/utterance and removing it from the utter-

ance.

The Joint Factor Analysis (JFA) approach [80], originally introduced for speaker

recognition technology, was successfully applied to spoken language recognition too.

Joint Factor Analysis took a step forward compared with previous approaches, in-

troducing, along with the supervector models, two channel and language dependent

factors as follows:

M = mubm + Ux + Vy + Dz (2.24)

where U is the channel subspace, V is the language subspace and D is a diagonal

matrix covering the residual variability. The vectors x and y are the channel depen-

dent and language dependent factors, respectively, and z is the residual factor; all

of them are assumed to be normally distributed.
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Data from various channel conditions and languages is needed to estimate the model

parameters. The language factors are forced to be the same for each language,

whereas different channel factors are estimated on each utterance. Channel factors

are also estimated on the test step, and used to adapt the language model to the

test channel condition.

Total Variability Factor Analysis

Finally, JFA gave rise to Total Variability Factor Analysis. This approach arose as

a result of a set of experiments which proved that, based just on the channel com-

ponents of the JFA approach, it was possible to perform SR with recognition rates

much better than random. The discovery suggested that the channel components

were therefore carrying speaker-related information, that was lost in the speaker

subspace. Under the Total Variability Factor Analysis approach, all the informa-

tion is stored in a single feature vector, by projecting data into a low-dimensional

subspace. In this way, all the relevant information is conveyed by low-dimensional

feature vectors known as i-vectors, which can be then processed using further mod-

eling approaches [40] [41] [98].

Under the total variability modeling approach [40], an utterance dependent GMM

supervector M (stacking GMM mean vectors) is decomposed as follows:

M = m + Tw (2.25)

where m is the utterance independent mean supervector, T is the total variability

matrix (a low-rank rectangular matrix) and w is the so called i-vector (a normally

distributed low-dimensional latent vector). That is, M is assumed to be normally

distributed with mean m and covariance TT′. The latent vector w can be estimated

from its posterior distribution conditioned to the Baum-Welch statistics extracted

from the utterance and using a UBM. The i-vector approach maps high-dimensional

input data (a GMM supervector) to a low-dimensional feature vector (an i-vector),

hypothetically maintaining most of the relevant information.

Then, i-vectors can be used to feed different classifiers from simple generative mod-

eling approaches (a single Gaussian to model each target language) or logistic re-

gression to more complex approaches, like feeding neural networks, or training a

Probabilistic Linear Discriminant Analysis model.
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2.5 Scoring

In SLR, given a trial, consisting of a test segment S and a target language lT , the

system must decide whether or not the target language is the language spoken in

the test segment. The decision is taken according to the value of the score attained

by the signal against the model of the language s(S, lT ) with regard to a threshold

θ. The trial will be accepted only if s(S, lT ) > θ.

The scores can be computed in different ways. The outputs of some of the presented

modeling approaches can be directly treated as scores (NN, PLDA, PPRLM, etc.)

Some other modelings need further processing to transform the outputs into reliable

scores. For example, supervectors or i-vectors can be tested against each other

using cosine distance, or they can feed other classifiers such as the mentioned SVMs,

logistic regression or NNs to get scores.

In most cases, scores still need further processing, either a fusion step to combine

the outputs of several systems or a calibration step also known as backend.

2.6 Calibration and Fusion

Calibration of the scores is required to set a single (general) threshold θ on which

the accept/reject decisions rely, that is, scaling the scores for the different language

models equalizing them for the whole set. Calibration is also applied in order to

produce meaningful scores (e.g. posteriors) [22]. The calibration stage can involve

different techniques, like normalization, backend models or the fusion of several

systems.

2.6.1 Score Normalization

Score normalization techniques such as Z-norm and T-norm [12] can help removing

the environmental effects on the score space. Nevertheless, they are rarely applied

alone in SLR systems. Instead, they are usually applied before some other backend.

Z-Norm

The Z-norm aims to compensate for deviations related to the target language. Given

two language models: an odd model m1 (for language l1) given the characteristics of

its training signals, and a ”standard” model m2 (for language l2), if the system was
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to evaluate a clean signal S1, containing speech in language l1 against both models,

the system could assign a low score to S1 on its evaluation against l1, compared

to the score attained against l2. To minimize this effect, scores for each language

are normalized with regard to a set of development signals containing non-target

languages, as follows:

Zscore =
sl − µz(m)

σz(m)
(2.26)

where µz(m) and σz(m) are the mean and standard deviation of the scores of model

m against the Z-norm set.

T-Norm

The T-norm aims to compensate for deviations related to the test signal. Suppose

that S1 contains speech in language l1 and S2 speech from some other language. If

S1 contained singularities (noises, laugh, screams, etc.) and S2 contained normal

speech, the score of S1 against l1 would probably be low with regard to the one

attained by S2 against l1. To get rid of this effect, the T-norm normalizes test-signal

scores using a set of non-target models following:

Tscore =
sl − µt(m)

σt(m)
(2.27)

where µt(m) and σt(m) are the mean and standard deviation of the scores of model

ml against the T-norm set.

ZT-Norm

The score combining both Z-norm and T-norm would be computed as:

ZTscore =

sl−µz(m)
σz(m) − µt(y)

σt(y)
(2.28)

where µz(m) and σz(m) are the mean and standard deviation of the scores of model

ml against the Z-norm set and µt(y) and σt(y) are the mean and standard deviation

of the Z-normalized score yl against the T-norm set.
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2.6.2 Backend models

The backend serves as a precalibration stage that transforms the space of scores to

get reliable estimates of the class probabilities. Besides, when the set of languages

for which models have been trained does not match the set of target languages, the

backend maps the available scores to the space of target languages.

In the case of NIST LRE datasets, separate models can be trained for different

dialects of a target language or for different data sources (telephone conversational

speech, radio broadcast speech, etc.), and non-target languages can be modeled as

well.

Several kinds of backends can be applied [109]. In this section we will just outline

the ones mostly applied in state-of-the-art systems.

Generative Gaussian Backend

In a generative Gaussian backend, the distribution of language scores is modeled by

a multivariate normal distribution N (µlT ,Σ) for each target language lT , where the

full covariance matrix Σ is shared across all target languages. Maximum Likelihood

(ML) estimates of the means and the covariance matrix are computed.

Given a score vector s of size K, the output (calibrated) log-likelihood vector ŝ is

obtained by:

ŝ = As + b + c (2.29)

where the rows of A are:

alT = µ′lT Σ−1 (2.30)

and the elements of b and c are (note that c is a constant vector):

blT = −1

2
µ′lT Σ−1µlT (2.31)

clT = −K
2

log (2π)− 1

2
log |Σ| − 1

2
s′Σ−1s (2.32)

Discriminative Gaussian Backend

In this case, ML estimates of the means and the common covariance matrix are used

initially, but further reestimates of the means are iteratively computed in order to
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maximize the Maximum Mutual Information (MMI) criterion:

FMMI (λ) =
∑
∀s

log
pλ (s|lT (s))

C∑
∀l pλ (s|l)C p (l)

(2.33)

where pλ (s|l (s)) is the likelihood of the score vector s given the true target language

lT (s) and model parameters λ, p(l) is the probability of language l and C is a heuristic

factor.

Logistic Regression

Multiclass logistic regression [150] can be used to transform the scores following:

ŝ = Qs + u (2.34)

where Q and u parameters are estimated to optimize the multi-class CLLR (see

Section 2.7).

2.6.3 Fusion

In the fusion stage, several systems can be combined. As outlined in Figure 2.7,

fusion classifiers take several calibrated system outputs (one score per language and

system) and combine them to give the final set of calibrated and fused scores.

Fusion classifiers use development data to evaluate the performance of each system

and estimate the weight that will be given to each system output (represented as SP

in the Figure 2.7). In this way, scores are weighted so that the systems performing

better attain a higher relevance in the final decision score (CS), and are adjusted

to fit the threshold. Binary logistic regression and multiclass logistic regression are

techniques normally used for parameter tuning. Focal [61] is a useful and versatile

toolkit widely used in the community for the fusion of several systems.

2.7 Evaluation Metrics

As in any other classification task, SLR performance metrics rely on combinations of

different types of errors. As represented in Figure 2.8, spoken language verification

systems produce two types of errors:
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Figure 2.7: Calibration and fusion of several SLR systems
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Figure 2.8: Target and non-target trials and classification errors

• Misses: Trials for which the correct answer is Accept (target trials) but the

system says Reject.

• False alarms: Trials for which the correct answer is Reject (non-target trials)

but the system says Accept.

The corresponding error rates can be computed as:

• Miss error rate, Pmiss: The fraction of target trials that are rejected.

• False alarm error rate, Pfa: The fraction of non-target trials that are

accepted.
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Combinations of the error rates define different cost functions, in terms of which

verification systems can be evaluated. The decision of the system may vary according

to application dependent parameters of the cost functions: the prior probability of

each language model (PT ), the cost of a miss error (Cmiss) and the cost of a false

alarm (Cfa), which define the operating point of the system. A well calibrated system

should be able to automatically adapt the decisions to each particular application.

Equal Error Rate (EER)

This measure reports system performance at the operation point for which the false

alarm error rate (Pfa) is equal to the miss error rate (Pmiss). The EER does not mea-

sure the global performance of a system (i.e. for a wide range of operating points).

Furthermore, since the threshold value is chosen a posteriori by the evaluator, it

does not take into account the ability of the system to be positioned at the EER

operation point (i.e. the performance loss due to bad calibration).

Detection Error Tradeoff (DET) curve

Detection Error Tradeoff (DET) curves [92] provide a straightforward way of com-

paring global performance of different systems for a given test condition and are

used in NIST evaluations to support system performance comparisons.

A DET curve (as the one showed in Figure 2.9) is generated by computing Pmiss and

Pfa for a wide range of operation points (thresholds), based on the scores yielded

by the analyzed system for a given test set. The axes of a DET curve show Pfa and

Pmiss in a lineal scale with regard to the normal distribution, given that both kinds of

errors are assumed to follow that distribution. The scale is helpful to increment the

resolution in low error regions, and makes lines representing systems look (usually)

straight, making the comparison among systems easier. In each curve, two operating

points are shown: the system operating point (given by system decisions, which

depend on the chosen threshold) and the optimal (or minimum cost) operating point,

which corresponds to the threshold that minimizes the cost function.
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Figure 2.9: DET curves for two systems. The system operating point is marked
with (x) whereas the optimal operating point is marked with (o).

Average Cost (Cavg)

This measure is a combination of Pmiss and Pfa and is computed as follows:

Cavg =
1

L

L∑
i=1


Cmiss·PT·Pmiss(i)

+ 1
L−1

∑
LN

Cfa·(1− PT − Poos)·Pfa (lT , lN )

+CfaPoosPfa (lT , lO)

 (2.35)

where L is the number of target languages, lT , lN , and lO stand for target, non-target

and out-of-set languages, respectively; and the application-dependent parameters

are: PT the target prior, Poos the prior for out of set languages (which takes the

value 0 in closed set evaluations), Cmiss the miss error cost and Cfa the false alarm

error cost.

Cavg accounts for the calibration loss, but it is still limited to a single operation point.

Since it was the primary measure in NIST evaluations until 2011, many authors have

historically reported system performance in terms of Cavg, for this reason, though

other measures will be also used to report SLR performance in this thesis, Cavg will

be primarily used when commenting and comparing results.
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NIST 2011 LRE metric, C24
avg

In the NIST 2011 LRE, an alternative metric was used to evaluate system perfor-

mance, based on a pairwise cost function defined by:

C(l1, l2) = Cl1Pl1Pmiss(l1)

+Cl2(1− Pl1)Pmiss(l2) (2.36)

where l1 and l2 denote languages 1 and 2, respectively.

The overall C24
avg measure was defined as the mean of the C(l1, l2) values over the

24 language pairs for which the Cmin values were greatest1. In the evaluation, the

application parameters were set to the following values: Cl1 = Cl2 = 1 and Pl1 = 0.5.

For further details, see [8].

Log-Likelihood Ratio Cost (CLLR)

When the scores represent (or can be interpreted as) log-likelihoods, systems can be

evaluated in terms of the so called CLLR [20], which has been used as alternative

performance measure in some NIST evaluations. CLLR allows us to evaluate the

system performance globally by means of a single numerical value. It only depends

on the scores (it does not depend on application dependent parameters), on their

ability to discriminate amongst target languages from each other and on how well

they are calibrated, the two key features of a SLR system. On the other hand,

it has higher statistical significance than EER or Cavg, since it is computed from

verification scores (in contrast to EER or Cavg, which depend only on Accept/Reject

decisions). Let us now recall how CLLR is computed.

Let LR(S, li) be the likelihood ratio corresponding to segment S and target language

li. The likelihood ratio can be expressed in terms of the conditional probabilities of

X with regard to the alternative target and non-target hypotheses, as follows:

LR(S, li) =
p(S|li)
p(S|¬li)

(2.37)

Let E be an evaluation dataset, consisting of the union of L disjoint subsets: Elj
(j ∈ [1, L]) containing speech segments in the target language lj . Pairwise costs

1Cmin(l1, l2): minimum of the pairwise cost function, found for the optimal operation point
(threshold).
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CLLR(li, lj), for i, j ∈ [1, L], are defined as follows:

CLLR(li, lj) =


1
|Eli
|
∑

S∈Eli

log2(1 + LR(S, li)
−1) j = i

1
|Elj
|
∑

S∈Elj

log2(1 + LR(S, li)) j 6= i
(2.38)

Finally, the average CLLR is computed by adding the pairwise costs for all the

combinations of target and non-target languages, as follows:

CLLR =
1

L

L∑
i=1

{PT · CLLR(li, li) +

L∑
j=1
j 6=i

PN · CLLR(li, lj)} (2.39)

where PT is the prior probability of target languages and PN = (1− PT )/(L− 1) is

the prior probability of non-target languages.

The CLLR takes unbounded non-negative values expressed in information units

(bits), with lower values representing better performance, the value 0 corresponding

to a perfect system and the value log2(L) corresponding to a system which just relies

on priors, thus providing no information to decide a trial. CLLR can be computed

by means of the FoCal toolkit [61]. Further details about the reasons for using this

measure and its interpretation can be found in [20] [22].

Actual Relative Confusion, Fact

In the Albayzin 2012 LRE, a new evaluation metric was proposed to measure system

performance: Fact. This new metric measures the information provided by a SLR

system through a set of log-likelihoods and does not require making hard decisions

(see [124] for details).

To compute the metric, a prior distribution over language classes is specified, so

that Bayes’ rule can be used to map the submitted log-likelihoods to language class

posteriors. The goodness of these posteriors is then evaluated by means of a log-

arithmic cost function. A weighted average of the logarithmic cost over all audio

segments forms the cross-entropy criterion. In the following paragraphs the cross-

entropy criterion is presented in the form of relative confusion, a measure closely

related to perplexity.

Logarithmic cost function: for every audio segment, St, the system under eval-

uation submits the log-likelihood-vector, `t. The evaluator has access to the true

class label for segment St, which we denote ltrue(t) ∈ {l1, . . . , lL}. This allows the
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evaluator to compute a measure of goodness for `t, in the form of the logarithmic

cost function:

Clog(Πt|Ltrue(t)) = − logP (ltrue(t)|`t,π) (2.40)

where Πt =
(
P (l1|`t,π), . . . , P (lL|`t,π)

)
is the whole posterior distribution, esti-

mated according to the prior distribution π defined in [124] and using the softmax

function to map the log-likelihood vector into posterior distributions.

Multiclass cross-entropy: the evaluation criterion, known as multiclass cross-

entropy, is formed by a weighted average of the logarithmic cost:

Cmce =

m∑
i=1

πi
‖Ti‖

∑
t∈Ti

− logP (li|`t,π) (2.41)

where Ti is the subset of indices for segments of class i. By ‖Ti‖ we mean the number

of segments of language class i.

The default system: the one that cannot make up its mind about the language class

and outputs `it = kt for every t. This gives P (li|`t,π) = πi for every i, t.

Cdef =

L∑
i=1

−πi log πi (2.42)

which is just the prior entropy. If a submitted system has Cmce ≥ Cdef, then it does

not improve upon the default system.

Confusion: to facilitate interpretation of cross-entropy, we define the confusion of

the system under evaluation as:

Fmce = exp(Cmce)− 1 (2.43)

Similarly, the prior confusion (confusion of the default system) is:

Fdef = exp(Cdef)− 1 (2.44)

The actual relative confusion is defined as:

Fact =
Fmce

Fdef
(2.45)

The relative confusion is the factor by which the system has changed (hopefully

reduced) the prior confusion. The reference value for relative confusion is 1. Badly

calibrated systems that have relative confusion greater than one are doing worse
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than the default system. Good systems must have relative confusion below 1. A

perfect system would have relative confusion of zero.



Chapter 3

Phone Log-Likelihood Ratios

As exposed in Section 1, the main objective when searching for a new set of features

was to find a way of conveying phonetic and spectral information into a single set

of features.

In this chapter, the choice of features used in this work is presented and defined.

Once the reader is familiar with the basic extraction procedure, details about the

main approach in which the features are used are given.

After that, with the aim of optimizing the extraction of the new set of features, a

detailed study is carried out using the NIST 2007 LRE dataset. This benchmark

provides a good compromise between database size and reliability and generalization

of the results, and was therefore selected as the primary benchmark for all the studies

in this work.

Once the optimal configuration of the feature extraction procedure is found, the

approach is compared with other acoustic and phonotactic approaches, to test the

goodness of the representation. Besides, fusions at the score level are tried, involving

all the mentioned approaches, to check the complementarity among different systems.

The significance of the results is also studied. Finally, to check the robustness of the

proposed features and to validate the conclusions attained on NIST 2007 LRE, three

additional series of SLR experiments are presented and discussed on the following

benchmarks: NIST 2009 LRE, NIST 2011 LRE and Albayzin 2010 LRE.

45
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3.1 Definition of Phone Log-Likelihood Ratios

(PLLR)

The computation of the features is based on a phone decoder that is assumed to

provide a reasonable coverage of the phonetic content of most languages. Even if

phoneme inventories in different languages range from 11 (e.g. for the East Papuan

language Rotokas and the Amazonian language Pirahã) to 141 (e.g. for the African

language !Xũ), the number of phonemes of most languages is between 30 and 60

phonetic units [37]. Let us consider one such phone decoder including N phone

units, each of them represented typically by means of a model of S states. Given

an input sequence of acoustic observations X, we assume that the acoustic posterior

probability of each state s (1 ≤ s ≤ S) of each phone model i (1 ≤ i ≤ N) at each

frame t, p(i|s, t), is output by the phone decoder.

The number of units of the phone decoder, N , multiplied by the number of states

that phone decoders provide for each phone unit would give a considerable feature

vector size, intractable when combined with several post-processing steps usually

applied on top of feature vectors. Therefore, to compute the features, first, the

acoustic posterior probability for each phone unit i at each frame t is computed by

adding the posteriors of its states:

p(i|t) =
∑
∀s

p(i|s, t) (3.1)

This way, we obtain an N dimensional vector, the one that according to the phone

decoder parameters, best describes the spectral content of the analysis window.

Geometrically, this vector can be seen as a point inside the standard N − 1 simplex.

The N − 1 simplex is a subset of RN determined by:

∆(n−1) = {(x0, . . . , xn−1) ∈ RN |
n−1∑
i=0

xi = 1 ∧ xi ≥ 0 ∀i} (3.2)

The vertices of this subset are given by the vectors vi ∈ RN , where:
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v1 = (1, 0, 0, ..., 0, 0)

v2 = (0, 1, 0, ..., 0, 0)

...

vN = (0, 0, 0, ..., 0, 1)

(3.3)

In our case, each vertex corresponds to a pure phonetic unit pi.

phone_post_3

phone_post_2(1,0,0)

(0,1,0)

(0,0,1)

p
1

p
2

p
3

phone_post_1

Figure 3.1: Standard 2-simplex defined by phone posteriors in the case of a
phone decoder with 3 phonetic units.

Figure 3.1 shows the Standard 2-simplex for the case of a phone decoder with 3

phonetic units. In the graphic, each vertex represents one of the three pure phonetic

units, and edges represent mixtures of the two phone units connected by them.

According to the phone decoder, the closer the point represented by the feature

vector is to each of the vertices, the closer the content of the analysis window is to

that phone sound.

This vector already provides frame-by-frame information that could be used as a

feature vector. The question at this point was, is it suitable as a feature vector? Most

of the modeling approaches used in systems based on frame level features assume

that they are normally distributed. When analyzing frame-level distributions of
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phone posteriors (see Figure 3.2, row 1) they show really sparse behaviors, as it

is expected for values representing probabilities. In order to compensate for this

undesirable effect, we seek for ways of transforming the features. Among the vast

number of possibilities, we selected the following, given the simplicity and result

of the transformations: First, as shown in Figure 3.2, row 2, the frame-level log-

posteriors are computed, whose distributions seem to be closer to Gaussian than

those of posteriors, but still featuring some singularities. Then, after computing the

phone posterior log-likelihood ratios (Figure 3.2, row 3), the distributions attained

are seemingly Gaussian.
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Figure 3.2: Distributions of frame-level phone posteriors (first row), phone log-
posteriors (second row) and phone log-likelihood ratios (third row) for 5 phonetic
units (A:, E, e:, i, O) of the Brno University of Technology decoder for Hungarian,

computed on a subset of the NIST 2007 LRE test set.

Assuming a classification task with flat priors, phone log-likelihood ratios are com-

puted from phone posterior probabilities as follows:

PLLR(i|t) = log
p(i|t)

1
(N−1) (1− p(i|t))

i = 1, ..., N (3.4)

This way we obtain a feature vector carrying the same information as the feature

vector output by the phone decoder, but featuring seemingly Gaussian distributions.

We denote these features Phone Log-Likelihood Ratios (PLLRs).
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3.2 Configuration of a SLR System Based on

PLLR Features

In our approaches to compute the PLLRs, we use the open software Temporal Pat-

terns Neural Network (TRAPs/NN) phone decoders, developed by the Brno Uni-

versity of Technology (BUT) [137]. Phone posterior probabilities are computed by

adding the values corresponding to the three states of each phone unit (see eq. 3.1).

BUT phone decoders provide posteriors for three non-phonetic units, which corre-

spond to int (intermittent noise), pau (short pause) and spk (non-speech speaker

noise). These three non-phonetic units were integrated into a single phone unit,

by simply adding the values corresponding to their posteriors. Then, PLLRs were

computed according to Equation 3.4, getting 43 (CZ), 59 (HU) and 50 (RU) log-

likelihood ratios per frame, respectively, which we call PLLR features.

In [6] we provide open software to compute the PLLRs, either from phone posteriors,

or from BUT phone decoder outputs.

Voice activity detection was performed by removing the feature vectors whose highest

PLLR value corresponded to the non-phonetic unit.

The PLLR-based baseline system follows the Total Variability Factor Analysis

(i-vector) approach (see section 2.4). A 1024-mixture gender-independent UBM

with diagonal covariance matrix is trained with the maximum likelihood criterion,

using binary mixture splitting, orphan mixture discarding and variance flooring.

A 500 dimensional total variability matrix is estimated as described in [50], using

data from target languages. To model the spoken language, a generative model is

defined in the i-vector feature space (as in [98]), the set of i-vectors of each language

being represented by a single Gaussian.

3.3 Search for the Optimal PLLR Feature

Configuration

Several configuration options could be tested on top of PLLRs. This section presents

the studies carried out in order to contrast results of the systems trained with PLLR

features modified or augmented with different techniques. Experimentation is carried

out using the NIST 2007 LRE dataset (the one selected as development set for this

work). In this study, among BUT TRAP/NN phone decoders, the one trained

for Hungarian was selected for experimentation, given that it had provided good
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results in several speech and language recognition tasks [43, 112, 143]. Results will

be provided in terms of both Cavg and CLLR, though performance will be mostly

compared using Cavg, given that this is the primary measure used historically in

most NIST LRE evaluations.

3.3.1 Phone Log-Likelihoods vs PLLRs

First, we compare the results attained by systems trained with PLLR features to

those attained using phone log-posteriors (PL). Results in Table 3.1 clearly show

that the PLLR transformation enhances the performance of the system.

Table 3.1: Cavg × 100 and CLLR performance for i-vector systems using phone
log-posteriors (PL) features and PLLRs computed with the HU BUT decoder,

on the NIST 2007 LRE primary evaluation task.

System Cavg × 100 CLLR

PL 4.41 0.604

PLLR 3.45 0.564

3.3.2 Dynamic Coefficients

Dynamic coefficients have led to significant gains when applied on top of MFCC

features in language verification systems, as they provide a larger temporal context,

which augments the information carried out by the features. In our attempt to

optimize the configuration of the PLLR-based SLR system, we tested the effect of

computing dynamic coefficients on top of the PLLRs. In the experiments reported

in this section, Deltas and double Deltas were estimated using equation 2.1 with

values D=2 and D=1, respectively, and different systems were trained using PLLR,

PLLR+∆ and PLLR+∆+∆∆ feature sets. Results are shown in Table 3.2.

Using PLLR plus first order deltas yielded a 23% relative improvement in terms

of Cavg with regard to using only PLLRs. Second order deltas, instead, degraded

the performance of the system. This degradation could possibly be due to the high

dimensionality of the feature set. When computing double Deltas with the HU BUT

TRAP/NN phone decoder, the feature vector reaches dimensionality 59× 3 = 177,

which combined with the 1024 dimensional GMM we use in our system, gives a

181248 dimensional supervector. This could pose a problem, as the training data

might not be enough for properly estimating all the parameters.
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Table 3.2: Cavg × 100 and CLLR performance for i-vector systems using PLLR,
PLLR+∆ and PLLR+∆+∆∆ features computed with the HU BUT decoder, on

the NIST 2007 LRE primary evaluation task.

System Cavg × 100 CLLR

PLLR 3.45 0.564

PLLR+∆ 2.66 0.382

PLLR+∆+∆∆ 3.60 0.506

In the experiments reported hereafter in this thesis, PLLR+∆ features will be used

as baseline.

3.3.3 Variability Compensation

Several channel compensation techniques can be applied at the feature extraction

stage (see Section 2.4). Among them, Feature Normalization and Feature Warping

are two of the most extensively applied on features for language (and speaker) ver-

ification systems. Table 3.3 presents results for the baseline systems, and systems

based on PLLR+Feature Normalization (FN), PLLR+Feature Warping (FW) and

PLLR+RASTA.

Table 3.3: Cavg × 100 and CLLR performance for i-vector systems using PLLR
features computed with the BUT HU decoder, with: (a) no noise reduction
technique, (b) Feature Normalization (FN), (c) Feature Warping (FW) and (d)

RASTA, on the NIST 2007 LRE primary evaluation task.

System Cavg × 100 CLLR

PLLR 2.66 0.382

PLLR+FN 2.95 0.436

PLLR+FW 3.21 0.435

PLLR+RASTA 8.67 1.149

Figures show that these techniques provide no gain with regard to the basic PLLR

feature-based system, thus it was decided not to apply any variability compensation

technique on top of the PLLRs at the feature extraction stage.
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3.4 Overall Performance of PLLR Based Systems

Once the optimal configuration was selected, that is, PLLR features augmented

with first order deltas and with no variability compensation techniques applied at

the feature extraction stage, we studied the performance of the systems trained on

the features obtained with different decoders and on different benchmarks.

First, results are presented for the NIST 2007 LRE dataset using the BUT TRAP/NN

CZ, HU and RU phone decoders. Results are also presented for different state-of-

the-art systems: an acoustic system, which shares the modeling part with the PLLR

approach, and three phone-lattice-SVM systems, which use the same phone decoders

as the ones used for the PLLR approaches, thus sharing the origin of the features.

System fusions have been also explored to check the complementarity between ap-

proaches. Finally, results are also presented for the NIST 2009 LRE, NIST 2011

LRE and Albayzin 2010 LRE datasets.

Details about system configuration, the applied backends and fusion procedures are

given below:

Baseline MFCC-SDC i-vector System

The concatenation of MFCC and SDC coefficients under a 7-2-3-7 configuration

was used as acoustic representation for the baseline acoustic i-vector system (like in

previous works [109] [114]). Voice activity detection was performed by removing the

feature vectors whose highest PLLR value corresponded to the non-phonetic unit

using the Brno University of Technology decoder for Hungarian (see Section 2.2.2

for details).

The GMM configuration, the estimation of the total variability matrix and scoring

were also performed as for the PLLR i-vector system, that is: A gender independent

1024-mixture UBM was estimated by the Maximum Likelihood criterion on the

training dataset, using binary mixture splitting, orphan mixture discarding and

variance flooring. The total variability matrix T was estimated according to the

procedure defined in [40], using only data from target languages. A generative

modeling approach was applied in the i-vector feature space, the set of i-vectors of

each language being modeled by a single Gaussian distribution.

Baseline Phonotactic Systems

The three phonotactic systems applied in this work were developed under the Phone-

lattice-SVM approach (see Section 2.3). Given an input signal, an energy-based

voice activity detector was applied. Then, the open software BUT Temporal Pat-

terns Neural Network (TRAPs/NN) CZ, HU and RU phone decoders were applied.
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Regarding channel compensation, noise reduction, etc. the three systems relied on

the acoustic front-end provided by BUT decoders.

BUT decoders were configured to produce phone posteriors that were converted to

phone lattices by means of HTK [156] along with the BUT recipe [137]. Then,

expected counts of phone n-grams were computed using the lattice-tool of SRILM

[144]. Finally, an SVM classifier was applied, SVM vectors consisting of expected

frequencies of phone n-grams (up to n = 3), weighted as in [121]. A sparse rep-

resentation was used, which involved only the most frequent features according to

a greedy feature selection algorithm [111]. L2-regularized L1-loss support vector

regression was applied, by means of LIBLINEAR [59].

Backend and Fusion Models

In this work, the backend setup was optimized in preliminary experiments on the

development set of each database, and then applied to the corresponding evaluation

set (see Appendix A for dataset configuration details). For the NIST 2007 and 2009

LRE datasets, a ZT-norm and a discriminative Gaussian backend were applied to

scores. For the NIST 2011 LRE dataset a generative Gaussian backend was applied.

Raw system scores were used for he Albayzin 2010 dataset.

In all cases, backend parameters were estimated and applied by means of the FoCal

toolkit [20] [22] [17] [62]. When combining systems, discriminative logistic regression

fusion parameters were estimated also using FoCal.

3.4.1 Results on the NIST 2007 LRE dataset

Table 3.4 presents results for this dataset. Regarding individual system perfor-

mances, the acoustic system reaches 2.85 Cavg. Performance of phonotactic systems

ranges from 2.08 Cavg for the one using the HU phone decoder, to 2.94 Cavg for the

one using the CZ phone decoder. The same happens with the PLLR systems, the

best results are attained with the features based on the HU phone decoder, 2.66

Cavg, and performance degrades up to 4.18 Cavg when using the CZ decoder. Ana-

lyzing the results, we see that the best PLLR result is in between the performance

of the best phone-lattice-SVM system and the one attained by the acoustic system.

Looking at results of fusions, as expected, acoustic and phonotactic approaches

combine well, HU-Phonotactic + acoustic-i-vector reaches 1.08 Cavg. Acoustic and

PLLR based i-vector systems, though sharing all the modeling part, also combine

well, attaining 1.40 Cavg (when combined with the HU decoder based PLLRs). The

result of fusing phonotactic and PLLR based approaches, even though they share

the origin of the features, provides a significant gain, getting up to 1.20 Cavg. Most
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Table 3.4: Cavg×100 and CLLR performance for the MFCC-SDC i-vector base-
line system, i-vector systems using PLLR features, phonotactic baseline systems
and the fusion of them, for each of the BUT decoders, on the NIST 2007 LRE

primary evaluation task.

System Cavg × 100 CLLR

MFCC-SDC i-vector (a) 2.85 0.407

Phonotactic (b1) 2.94 0.440
CZ

PLLR i-vector (c1) 4.18 0.550

(a)+(b1) 1.22 0.189

(a)+(c1) 1.95 0.280

(b1)+(c1) 1.79 0.257
Fusion

(a)+(b1)+(c1) 1.24 0.176

Phonotactic (b2) 2.08 0.310
HU

PLLR i-vector (c2) 2.66 0.382

(a)+(b2) 1.08 0.152

(a)+(c2) 1.40 0.215

(b2)+(c2) 1.20 0.166
Fusion

(a)+(b2)+(c2) 0.82 0.124

Phonotactic (b3) 2.69 0.383
RU

PLLR i-vector (c3) 4.08 0.549

(a)+(b3) 1.13 0.182

(a)+(c3) 1.72 0.265

(b3)+(c3) 1.76 0.240
Fusion

(a)+(b3)+(c3) 1.10 0.163

remarkably, when fusing the three approaches, the system gets 0.82 Cavg, meaning

that PLLR features provide complementary information with regard to both, acous-

tic and phonotactic approaches. These results are consistent also when using other

decoders, gains being more remarkable when comparing CLLR metrics.

Statistical Significance

To measure the statistical significance of performance improvements (in terms of

Cavg, which is the primary performance measure in this work), a series of two-

tailed paired T-tests was carried out [68], which gives an idea of the variability of

performance improvements (and thus, the robustness of such improvements) across

randomly defined sets of data. To that end, the NIST LRE 2007 evaluation dataset

was split into 20 language-balanced disjoint random subsets. Then, Cavg values were

computed on each subset for baseline systems (a), (b2) and (a)+(b2) and for the same
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Figure 3.3: False alarm and miss errors on the NIST LRE 2007 primary task for
baseline systems: (a) acoustic MFCC-SDC i-vector system, (b2) Phone-Lattice-
SVM system and (a)+(b2) the fusion of the two latter, taken alone (dark gray)

and fused with (c2) the HU PLLR i-vector system (light gray).

Figure 3.4: Means of Cavg relative improvements and their corresponding inter-
vals at 95% confidence level, on the NIST LRE 2007 primary task, when fusing
the HU PLLR i-vector system (c2) with baseline systems: (a) acoustic MFCC-
SDC i-vector system, (b2) Phone-Lattice-SVM system and (a)+(b2) the fusion

of the two latter.

systems fused with the PLLR HU system: (a)+(c2), (b2)+(c2) and (a)+(b2)+(c2).

Figure 3.3 provides the number of false alarm and misses for the systems. Figure 3.4

shows the mean and the confidence interval at 95% confidence level of the relative

Cavg improvements, revealing that they are statistically significant in all cases.
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3.4.2 Results on the NIST 2009 LRE dataset

When analyzing the results attained in this benchmark, presented in Table 3.5, we

find that the best single system is the Phonotactic-RU, yielding 2.24 Cavg, followed

by the PLLR i-vector HU phonotactic system with 2.42 Cavg, and finally the MFCC-

SDC i-vector, which obtains 2.70 Cavg.

Table 3.5: Cavg × 100 and CLLR performance for the baseline phonotactic and
i-vector systems, the PLLR i-vector system and the fusion of them, on the NIST

2009 LRE primary evaluation task.

System Cavg × 100 CLLR

MFCC-SDC i-vector (a) 2.70 0.535

Phonotactic (b1) 2.98 0.578
CZ

PLLR i-vector (c1) 3.18 0.592

(a)+(b1) 1.82 0.365

(a)+(c1) 1.99 0.416

(b1)+(c1) 1.95 0.399
Fusion

(a)+(b1)+(c1) 1.61 0.388

Phonotactic (b2) 2.49 0.502
HU

PLLR i-vector (c2) 2.42 0.505

(a)+(b2) 1.67 0.346

(a)+(c2) 1.79 0.392

(b2)+(c2) 1.69 0.357
Fusion

(a)+(b2)+(c2) 1.48 0.321

Phonotactic (b3) 2.24 0.457
RU

PLLR i-vector (c3) 2.74 0.548

(a)+(b3) 1.53 0.323

(a)+(c3) 1.92 0.404

(b3)+(c3) 1.65 0.344
Fusion

(a)+(b3)+(c3) 1.47 0.307

Phonotactics (b1+b2+b3) 1.66 0.343

PLLRs (c1+c2+c3) 1.89 0.402

(a)+(b1+b2+b3) 1.43 0.295

(a)+(c1+c2+c3) 1.69 0.361
Fusion

ALL 1.28 0.282

Regarding fusions, once again the acoustic and phonotactic approaches combine well,

followed closely by the fusion of the phonotactic and PLLR i-vector systems. The

fusion of the two i-vector systems (acoustic and PLLR-based) yields similar figures.
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The fusion of the acoustic system with any pair of phonotactic and PLLR i-vector

systems leads to improved performance in all cases. Other fusions are also presented

in Table 3.5, remarkably the fusion of the three phonotactic systems, which achieves

better performance than the fusion of the PLLR-based systems. The fusion of all 7

systems attains a remarkable 1.28 Cavg.

3.4.3 Results on the NIST 2011 LRE dataset

Performance on the NIST 2011 LRE dataset is presented in Tables 3.6 (old Cavg

metric) and 3.7 (new NIST 2011 C24
avg metric).

In this benchmark, the best single system is PLLR-RU, which reaches 4.70 Cavg.

The MFCC-SDC i-vector system obtains 5.96 Cavg and the best phonotactic system

gets 6.85 Cavg. Best pairwise fusions are obtained when combining both i-vector ap-

proaches, reaching 3.77 Cavg. The fusion of the three systems yields up to 3.37 Cavg.

In NIST 2011 LRE the fusion of the three PLLR-based systems clearly outperforms

the fusion of phonotactic systems. The overall fusion reaches 3.01 Cavg.

Results measured with the new metric are consistent with the ones obtained using

Cavg, but with the new metric differences among systems are more noticeable, and

relative improvements when fusing systems are (overall) more significant.
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Table 3.6: Cavg × 100 and CLLR performance for the i-vector baseline system
using acoustic features (MFCC-SDC), i-vector systems with PLLR+∆ features,
phonotactic baseline systems and the fusion of them, for each of the BUT de-

coders, on the NIST 2011 LRE primary evaluation task.

System Cavg × 100 CLLR

MFCC-SDC i-vector (a) 5.96 1.088

Phonotactic (b1) 7.98 1.376
CZ

PLLR+∆ i-vector (c1) 5.31 0.978

(a)+(b1) 4.34 0.816

(a)+(c1) 4.01 0.770

(b1)+(c1) 4.36 0.822
Fusion

(a)+(b1)+(c1) 3.64 0.691

Phonotactic (b2) 7.15 1.280
HU

PLLR+∆ i-vector (c2) 5.18 0.982

(a)+(b2) 4.34 0.823

(a)+(c2) 4.00 0.789

(b2)+(c2) 4.39 0.829
Fusions

(a)+(b2)+(c2) 3.63 0.714

Phonotactic (b3) 6.85 1.212
RU

PLLR+∆ i-vector (c3) 4.70 0.898

(a)+(b3) 4.25 0.780

(a)+(c3) 3.77 0.734

(b3)+(c3) 3.91 0.740
Fusions

(a)+(b3)+(c3) 3.37 0.647

Phonotactics (b1)+(b2)+(b3) 4.57 0.844

PLLRs (c1)+(c2)+(c3) 3.79 0.720

(b1+b2+b3)+(c1+c2+c3) 3.13 0.607

(a)+(b1+b2+b3) 3.58 0.674

(a)+(c1+c2+c3) 3.39 0.663

Fusions

ALL 3.01 0.578
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Table 3.7: min C24
avg×100 and actual C24

avg×100 performance for the phonotactic
and acoustic i-vector baseline systems, the PLLR+∆ i-vector system and the

fusion of them, on the NIST 2011 LRE primary evaluation task.

System min C24
avg × 100 C24

avg × 100

MFCC-SDC i-vector (c) 11.63 13.56

Phonotactic (a1) 13.59 15.05
CZ

PLLR+∆ i-vector (b1) 10.00 12.46

(a)+(b1) 8.32 10.41

(a)+(c1) 7.36 10.04

(b1)+(c1) 7.95 10.00
Fusion

(a)+(b1)+(c1) 6.59 8.85

Phonotactic (a2) 12.49 14.28
HU

PLLR+∆ i-vector (b2) 9.83 12.12

(a)+(b2) 7.98 0.10.43

(a)+(c2) 7.78 10.19

(b2)+(c2) 7.75 10.31
Fusions

(a)+(b2)+(c2) 6.68 9.14

Phonotactic (a3) 11.37 12.91
RU

PLLR+∆ i-vector (b3) 8.27 11.27

(a)+(b3) 7.59 9.38

(a)+(c3) 6.73 9.21

(b3)+(c3) 7.36 10.04
Fusions

(a)+(b3)+(c3) 5.61 7.96

Phonotactics (b1)+(b2)+(b3) 7.86 9.62

PLLRs (c1)+(c2)+(c3) 6.57 9.10

(b1+b2+b3)+(c1+c2+c3) 5.06 7.51

(a)+(b1+b2+b3) 5.99 8.47

(a)+(c1+c2+c3) 5.88 8.80

Fusions

ALL 4.78 7.49
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3.4.4 Results on the Albayzin 2010 LRE dataset

With the aim of exploring possible performance differences when dealing with wide-

band signals, and specially in noisy environments, SLR experiments were also carried

out on the Albayzin 2010 LRE dataset.

Table 3.8: Cavg × 100 and CLLR performance for the baseline systems, and the
PLLR i-vector systems using phone decoders for CZ, HU and RU on the Albayzin

2010 LRE primary task on clean and noisy speech.

Clean Noisy

System Cavg × 100 CLLR Cavg × 100 CLLR
MFCC-SDC i-vector 2.12 0.176 3.95 0.325

Phonotactic 2.15 0.215 7.00 0.664
CZ

PLLR i-vector 2.33 0.223 6.66 0.546

Phonotactic 2.35 0.218 7.28 0.621
HU

PLLR i-vector 1.41 0.127 3.17 0.308

Phonotactic 2.85 0.244 6.54 0.571
RU

PLLR i-vector 2.34 0.225 4.38 0.352

Results are consistent with the ones obtained in the NIST benchmarks (remind that

all of them involved 8 kHz telephone-channel speech). Focusing first on clean speech

results (see Table 3.8), the MFCC-SDC i-vector system reaches 2.12 in terms of Cavg.

Comparing the results attained by the systems trained with different decoders, we

see that this time the best phonotactic system is the one trained with the CZ phone

decoder (2.15 Cavg), followed closely by the HU one (2.35 Cavg). Among the PLLR

i-vector approaches, instead, the HU attains a remarkable 1.41 Cavg, making it the

best individual system. Performance on the noisy condition suffers (obviously) a

severe degradation, more pronounced in phonotactic systems. The acoustic i-vector

system obtains 3.95 Cavg. Among phonotactic systems, the one trained with the

RU decoder provides the best performance (6.54 Cavg). On the other hand, the HU

i-vector PLLR system outperforms all the individual systems also in noisy speech,

attaining 3.17 Cavg.

Table 3.9 shows the performance attained by the baseline MFCC-SDC i-vector sys-

tem, the baseline phonotactic-HU system, the PLLR-HU i-vector system and fusions

of them. As in other benchmarks, all pairwise system combinations obtain good re-

sults. In clean speech, the fusion of the MFCC-SDC i-vector system and phonotactic-

HU led to great improvements with regard to single system performance (1.10 Cavg).

Similarly, the combination of the phonotactic-HU and PLLR-HU systems attained

1.09 Cavg, followed closely by the fusion of the two i-vector systems (1.20 Cavg).
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Table 3.9: Cavg×100 and CLLR performance for the baseline systems, the PLLR
i-vector system and different fusions on the Albayzin 2010 LRE primary task on

clean and noisy speech.

Clean Noisy

System Cavg × 100 CLLR Cavg × 100 CLLR
MFCC-SDC i-vector (a) 2.12 0.176 3.95 0.325

Phonotactic (b) 2.35 0.218 7.28 0.621
HU

PLLR i-vector (c) 1.41 0.127 3.17 0.308

(a)+(b) 1.10 0.106 2.43 0.211
(a)+(c) 1.20 0.109 2.65 0.227
(b)+(c) 1.09 0.092 2.65 0.228

Fusion

(a)+(b)+(c) 0.97 0.086 1.86 0.168

Fusion ALL (7 systems, Table 3.8) 0.82 0.075 1.74 0.169

The fusion of the three systems still provided some further improvements, leading

to 0.97 Cavg, which means a 12% relative improvement with regard to the best pair-

wise fusion. In the noisy condition, all pairwise fusions obtain similar performance.

The best out of them is the combination of MFCC-SDC i-vector and phonotactic

systems (2.43 Cavg), followed by the other two, which obtain the same figure (2.65

Cavg). The fusion of the three systems reaches 1.86 Cavg, providing a 23% relative

improvement with regard to the best pairwise fusion.

In this benchmark, the fusion of all 7 systems still provides a slight improvement in

the overall performance.

3.5 Chapter Summary

In this chapter, we have defined the PLLR features, integrated them in a language

recognition system, presented an study focusing on the optimization of a PLLR-

based system and evaluated its performance in several benchmarks.

The studies have revealed that PLLR features are easy to extract and integrate in

state-of-the-art systems. Their usefulness has been extensively validated, as systems

based on PLLR features attain competitive results in the four analyzed benchmarks.

Furthermore, the high performance attained by fusions of the PLLR-based system

with baseline acoustic and phonotactic approaches reveals a complementarity with

state of the art techniques, and the suitability of using PLLR features to improve

overall system performance.





Chapter 4

Dimensionality Reduction on

PLLRs

As exposed in the previous chapter, PLLRs are an effective way of conveying acoustic

and phonetic information into frame level vectors. This, along with the fact that they

can be computed using open-software, makes them easy to integrate in other state-

of-the-art approaches based on frame level representations. Nevertheless, PLLR

features have higher dimensionality than the acoustic representations that they are

replacing in the systems. This can pose a computational problem when trying to

deal with certain post-processing or modeling approaches.

MFCC feature vectors usually range from 7 to 19 dimensions, which are then aug-

mented with Dynamic coefficients or with SDC, which doubles, triples or even mul-

tiplies by 7 the size of the feature vectors [139], [18]. The size of PLLR feature

vectors depends on the phone decoder and the phonetic inventory of the language

it’s trained on. As outlined in Section 3.1, though most languages have around 30

phonemes, the number of units of the phone decoders used in this work ranges from

30 to 60 (see Section 3.2 for details).

This Chapter deals with the high dimensionality issue, by studying different reduc-

tion techniques that can be applied to PLLR features.

63
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4.1 Supervised and Unsupervised Dimensionality

Reduction Techniques

There is a handful of works in different fields of speech recognition literature, aiming

to reduce the number of phone models into smaller broad classes, either by clustering

or by selection techniques. On the one hand, some works apply supervised cluster-

ing, which requires knowledge of the language/phonemes to define phone families,

as in [79], where several phone sets are defined for a PRLM approach used in a SLR

task, or in [143], where a reduced phone set is also used to reduce n-gram counts on

a phonotactic SLR i-vector approach. On the other hand, unsupervised clustering

based on different distance metrics like the confusion among phonemes [157] or mu-

tual information based merging and selection [88] have also been applied to improve

speech or language recognition.

4.1.1 Supervised Techniques

In phonotactic SLR approaches, it is a common practice to take advantage of the

phonetic knowledge to reduce the set of phone units [79], [143]. Different clusterings

can be performed in the phone posterior probability space (on which PLLRs are

computed) based on expert knowledge of the properties that make each phoneme

different from others (manner and place of articulation, voicing, etc.).

The International Phonetic Alphabet (IPA) [9] is a phonetic notation system built

by linguists in order to provide a normalized and unique way of representing all

the possible sounds of spoken languages. It contains 107 symbols and 55 modifiers.

These symbols are mostly based on the Latin alphabet (using as few non-Latin

forms as possible) and they are classified in different categories: letters represent

basic sounds, that is pulmonic consonants, non-pulmonic consonants and vowels;

diacritics specify these sounds, suprasegmentals point out special qualities of the

sounds such as stress or durations, tones and word accents are specified by their

level and contour and the rest of possible variations are covered by other symbols

(see Figure 4.1 for details).
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PULMONIC CONSONANTS
Bilabial Lab. dent. Dental Alveolar P-alveo. Retroflex Palatal Velar Uvular Pharyng. Glottal

Plosive p b t d ú ã c é k g q å P
Nasal m M n ï ñ N ð
Trill à r ö
Tap/Flap R ó
Fricative F B f v T D s z S Z ù ü ç J x G X K èQ h H
Lat.Fric. ìÐ
Approx V ô õ j î
Lat.appr. l í L Ï

NON PULMONIC CONSONANTS
Clicks Voiced implosives Ejectives

ò Bilabial á Bilabial ’ Examples:
| Dental â Dental/alveolar p’ Bilabial
! (Post)alveolar ê Palatal t’ Dental/alveolar
} Palatoalveolar ä Velar k’ Velar
|| Alveolar lateral É Uvular s’ Alveolar fricative

VOWELS

æ 5

UI Y

Æ•3•
@
8•9•

0•1• u•W•

o•7•

O•2•

6•A•Œ•a•

œ•E•

ø•e•

y•i•

DIACRITICS

˚
Voiceless n

˚ ¨
Breathy voiced b

¨
” Dental t”

ˇ
Voiced s

ˇ ˜
Creaky voiced b

˜
„ Apical t„

h Aspirated th � Linguolabial t� « Laminal t«

» More rounded O»
w Labialized tw ˜ Nasalized ẽ

– Less rounded O–
j Palatalized tj n Nasal release dn

ff Advanced uff
G Velarized tG l Lateral release dl

¯
Retracted e

¯
Q Pharyngealized tQ ^ No audible release d^

¨ Centralized ë & Velar. or pharyng. l&
‰ Mid-Centralized ‰e fi Raised efi (ŕ=voiced alveolar fricative)

"
Syllabic n

" fl Lowered efl (B
fl
=voiced bilabial approximant)

“
Non-syllabic e

“ ffi Advanced Tongue Root effi
~ Rhoticity ~n ffl Retracted Tongue Root effl

TONES AND WORD ACCENTS
e̋ ,

Ă
£e Extra high ě , Ĺ£e Rising

é ,
Ă£e High ê , Ď£e Falling

ē , Ă£e Mid
Ě£e High rising

v̀ , Ă£v Low Ě£v Low rising
‚v , Ă£v Extra low

ŐŁ£v (High) rising falling

SUPRASEGMENTALS
" Primary stress
­ Secondary stress

e: Long
e; Half-long
ĕ Extra short
| Minor (foot) group
‖ Major (intonation) group
. Syllable break

< Linking (absence of a break)

OTHER SYMBOLS

û Voiceless labial-velar fricative C ý Alveolo-palatal fricatives

w Voiced labial-velar approximant Õ Voiced alveolar lateral flap

4 Voiced labial-palatal approximant Ê Simultaneous S and x

H Voiceless epiglottal fricative

Ý Voiced epiglottal fricative

Ü Epiglottal plosive

Affricates and double articulations

can be represented by tow symbols
>
kp ts<

joined by a tie bar if necessary

Figure 4.1: IPA charts
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In our study, we used these tables as reference, and applied them to classify phonetic

units in the BUT TRAP/NN HU phone decoder. The Hungarian language consists

of the set of phonemes shown in Table 4.1 (plus long forms of some of them, denoted

by the suprasegmental ”:”) and Figure 4.2.

Table 4.1: IPA chart for the consonant phonemes of Hungarian

Bilabial Lab. dent. Dental Alveolar P-alveo. Palatal Velar Glottal

Plosive p b t d c é k g
Nasal m n ñ
Trill r
Fricative f v s z S Z h
Approximant j
Lat. approximant l

Affricate �ts �dz �tS �dZ �cç �éJ*

Figure 4.2: IPA chart for vowel phonemes of Hungarian

Four different phone classifications were considered in this study:

• Family-R: The set of Reduced (R) phones used in [143]1 to reduce the number

of n-gram counts in a phonotactic approach, resulting in 33 phone classes.

• Family-SL: A set of phonemes defined by merging all Short and Long (SL)

phonemes (for m, n, b, t, s, z, r, l, S, c, é, ñ, j and k), the allophones (for

m, n and h), and vowels according to their basic sound, resulting in 31 phone

classes.

• Family-MP : A set of phonemes defined according to phonetic categories fol-

lowing IPA charts. Phones produced with the same Manner and Place (MP)

of articulation were merged. Vowels belonging to the same regions of the IPA

chart were also merged. This merging provided 23 phone classes. Table 4.2

shows by different colorings the clusters defined for consonant phonemes in

this approach.

• Family-M : A more generic phonetic classification, where consonants produced

with the same Manner (M) of articulation were merged. Vowels belonging

1The set of merged phonemes was kindly provided by the authors.



4.1. Supervised and Unsupervised Dimensionality Reduction Techniques 67

Table 4.2: IPA chart for the consonant phonemes of Hungarian merged accord-
ing to Family-MP criteria

Bilabial Lab. dent. Dental Alveolar P-alveo. Palatal Velar Glottal

Plosive p b t d c é k g
Nasal m n ñ
Trill r
Fricative f v s z S Z h
Approximant j
Lat. approximant l

Affricate �ts �dz �tS �dZ �cç �éJ*

to the same regions in the IPA charts were also merged, attaining 14 phone

classes. Table 4.3 shows by different colorings the clusters defined for consonant

phonemes in this approach.

Table 4.3: IPA chart for the consonant phonemes of Hungarian merged accord-
ing to Family-M criteria

Bilabial Lab. dent. Dental Alveolar P-alveo. Palatal Velar Glottal

Plosive p b t d c é k g
Nasal m n ñ
Trill r
Fricative f v s z S Z h
Approximant j
Lat. approximant l

Affricate �ts �dz �tS �dZ �cç �éJ*

For each of the above families, phones included in the same phonetic class were used

to define a single unit by adding the posteriors obtained in Equation 3.1, before

computing the log-likelihood ratios.

4.1.1.1 Results and Selection of the Optimal Supervised Technique

Table 4.4 shows performance of the different supervised dimensionality reduction

techniques, compared to the baseline system (based on the PLLR+∆ features pre-

sented on Chapter 32).

The system trained on the baseline features (with a PLLR feature vector of size 59

plus Deltas) attains 2.86 Cavg. When using the 33 dimensional Family-R feature

set (decreasing the feature vector size to almost a half), performance is just slightly

degraded, obtaining 3.07 Cavg. The system trained on the Family-SL feature set

2Note that baseline performance reported in this Chapter is worse than that reported in Chapter
3, due to the lower number of iterations performed to obtain the Total Variability matrix (5 instead
of 10).
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Table 4.4: %Cavg and CLLR performance for the PLLR i-vector system with
different knowledge-based phone merging approaches, on the NIST 2007 LRE

primary task.

HU PLLR System Dim %Cavg CLLR

Baseline 59+∆ 2.86 0.389

R 33+∆ 3.07 0.422
SL 31+∆ 3.46 0.467
MP 23+∆ 2.98 0.426

Supervised
Merge
Phones

Family

M 14+∆ 4.22 0.580

(with around the same size as the Family-R feature set) suffers higher degradation

(3.46 Cavg). Instead, the clustering performed according to the Family-MP criteria,

which provides a feature vector whose size is almost a third of the original baseline

vector size, suffers around the same (or less) degradation than the Family-R set,

attaining 2.98 Cavg. Finally, The Family-M feature set, reducing the PLLR vector

to only 14 dimensions, performs significantly worse than the rest of the approaches,

meaning that the number of clusters selected is probably too low, causing a higher

loss of information.

Given the results obtained and according to the relation between feature size and

performance, Family-MP was selected as the best approach among supervised di-

mensionality reduction (phone merging) techniques.

4.1.2 Unsupervised Techniques

Supervised techniques provide some benefits: they are based on phonetic information

or expert knowledge criteria and can be therefore useful approximations a priori.

At the same time, they pose some problems: knowledge of each language is needed,

and therefore studies must be done for each phone decoder; furthermore, there is no

freedom to select the dimensionality of the resulting set of phones, given that a pre-

defined set of rules must be applied. Unsupervised techniques instead are more flexi-

ble and easily tunable, so that the output dimensionality of the sets of phones can be

arbitrarily defined [157], [88]. As a con, the clusters obtained with these techniques

can not be easily interpreted. In this work, several clustering approaches were stud-

ied considering mutual information, correlation or covariance between phonemes,

and several phoneme selection criteria, such as the overall frequency of phonemes,

standard deviations of the distributions of the phonemes between languages, etc.

Finally the following criteria have been applied:
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• Correlation: An iterative clustering algorithm is used. In each step, the al-

gorithm merges the closest phone pair (or phone group pair) according to the

correlation among the phone posterior probabilities. The clustering provided

a singular feature set, with a few sets composed of a relatively high number of

phonemes, and a lot of non-grouped phonemes.

• Frequency : The N phones with the highest posterior probabilities overall in

the training set are selected as most relevant, and therefore used as (reduced)

phone set. With this criteria, half of the vowel phonemes were discarded, as

well as most of the long, affricate and palatal consonants.

Finally, Principal Component Analysis (PCA) [14] was also tested. Since PCA is

an orthogonal transformation that is assumed to deal with normally distributed

data ranging in (−∞,∞), it was not a suitable transformation to be applied on

the phone posterior probability space, which ranges in [0,1]. Instead, PCA can be

directly applied on the normally distributed PLLR space, which ranges in [−∞,∞].

4.1.2.1 Results and Selection of the Optimal Unsupervised Technique

For studying the unsupervised dimensionality reduction techniques, the baseline and

the best supervised clustering technique were taken as reference. In Table 4.5, the

performance figures attained by those reference approaches and the systems trained

on the feature sets obtained with the unsupervised techniques are shown. To provide

a fair comparison among approaches, and given that the dimensionality could be

easily set in these experiments, unsupervised techniques were configured to provide

feature sets of 23 dimensions (matching the size of the Family-MP feature set).

As shown in Table 4.5, the system trained on the Correlation reduced set of fea-

tures performs much worse than the one based on the Family-MP set (3.76 vs 2.98

Cavg). The same happens with the approach trained on the Frequency reduced set

of features (3.56 Cavg). Surprisingly, the feature projection method (PCA) not only

outperforms other dimensionality reduction approaches, but it also outperforms the

baseline system reaching 2.45 Cavg.

4.1.3 Combination of Systems using Different Decoders

This section shows results for the baseline system and the two best dimensionality

reduction approaches: supervised Family-MP clustering and PCA projection, on

different datasets and for different phone decoders, to check the consistency of the

conclusions attained. In the set of experiments presented in this section, 10 iterations

were applied to compute the Total Variability Matrix.
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Table 4.5: %Cavg and CLLR performance for the PLLR i-vector system with
different unsupervised dimensionality reduction approaches, on the NIST 2007

LRE primary task.

HU PLLR System Dim %Cavg CLLR

Baseline 59+∆ 2.86 0.389

Supervised
Merge
Phones

Family MP 23+∆ 2.98 0.426

Merge
Phones

Correlation 23+∆ 3.76 0.523

Select
Phones

Frequency 23+∆ 3.56 0.480Unsupervised

PLLR
Projection

PCA 23+∆ 2.45 0.333

4.1.3.1 Results on the NIST 2007 LRE dataset

Results of the baseline and best dimensionality reduction approaches using multiple

decoders on the NIST 2007 LRE are shown in Table 4.6.

Table 4.6: %Cavg and CLLR performance for PLLR i-vector baseline system,
and systems using PLLR features reduced to the Family-MP set and projected
with PCA, for each of the BUT decoders, and their fusion, on the NIST 2007

LRE primary task.

PLLR System %Cavg CLLR

CZ (43+∆) 4.18 0.550

HU (59+∆) 2.66 0.382

RU (50+∆) 4.08 0.549
Baseline

CZ+HU+RU 2.09 0.299

CZ (25+∆) 4.55 0.619

HU (23+∆) 3.08 0.424

RU (21+∆) 4.30 0.598
Family-MP

CZ+HU+RU 2.24 0.313

CZ (25+∆) 3.12 0.432

HU (23+∆) 2.17 0.320

RU (21+∆) 3.29 0.451
PCA

CZ+HU+RU 1.79 0.240
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Even though the best performance is attained with the HU phone decoder, conclu-

sions are the same with all decoders. The Family-MP approach degrades system

performance between 6% (RU) and 16% (HU) in terms of Cavg. On the other hand,

PCA always provides a significant gain with regard to the baseline approach, ranging

from 18% (HU) to 25% (CZ) relative improvements in terms of Cavg. When fusing

the systems using different decoders trained on the same set of features (meaning

that we use the same baseline or clustering approach), performance improves in all

cases. Fusion provides a relative improvement of 21% with regard to the best individ-

ual system when fusing the baseline approaches, 27% for the Family-MP approaches

and 18% when fusing systems trained on the features projected by PCA.

4.1.3.2 Results on the NIST 2011 LRE dataset

Results on the NIST 2011 LRE for the systems trained on the baseline, Family-MP

and PCA-projected set of features are outlined in Table 4.7.

Table 4.7: %Cavg, CLLR and C24
avg × 100 performance for the PLLR i-vector

baseline system, and systems using PLLR features reduced to the Family-MP set
and projected with PCA, for each of the BUT decoders, and their fusion, on the

NIST 2011 LRE primary task.

PLLR System %Cavg CLLR %C24
avg

CZ (43+∆) 5.31 0.978 12.46

HU (59+∆) 5.18 0.982 12.12

RU (50+∆) 4.70 0.898 11.27
Baseline

CZ+HU+RU 3.79 0.720 9.10

CZ (25+∆) 5.53 1.054 13.62

HU (23+∆) 5.40 1.015 12.64

RU (21+∆) 5.13 0.961 11.57
Family-MP

CZ+HU+RU 3.82 0.693 9.79

CZ (25+∆) 4.46 0.855 11.20

HU (23+∆) 4.48 0.877 10.88

RU (21+∆) 4.20 0.803 11.01
PCA

CZ+HU+RU 3.21 0.634 8.45

Results are consistent with the ones attained on the NIST 2007 LRE. On this dataset

the relative degradation of the systems trained on the Family-MP set with regard

to the ones trained on the baseline features range from 4% (HU) to 9% (RU) in

terms of Cavg. Still, when fusing the systems trained on different decoders, the

performance attained by both sets of fused systems is comparable (3.79 Cavg for
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the baseline vs 3.82 of the Family-MP). Regarding the PCA approach, performance

relative improvements range from 11% (RU) to 16% (CZ) in terms of Cavg when

applying this technique. The fusion of the different PCA systems using the three

phone decoders reaches 3.21 Cavg.

4.2 PCA Dimensionality Optimization

Given the conclusions attained on the PLLR dimensionality reduction study, we

decided to follow the study of the application of PCA on top of the features, to

try to get an insight of the behavior of the features when applying this technique.

Moreover, we wanted to find how far the dimensionality could be reduced, without

getting a high performance loss, in order to (possibly) be able to compute Shifted

Deltas on top of PLLRs. Therefore, the two main objectives were:

• To find the best dimensionality to which the PLLR feature set could be pro-

jected to optimize performance.

• To find the smallest dimensionality to which the PLLR feature set could be

reduced without a high performance degradation, in order to compute shifted

deltas on top of the features.

Figure 4.3 shows CLLR and Cavg performance for the baseline PLLR system and

various systems trained on PLLR features projected by means of PCA to different

dimensionalities. Baseline reaches 2.86 Cavg. Note that performance is significantly

enhanced by simply projecting the features (without dimensionality reduction). This

could be explained by the whitening of the data attained when applying PCA, which

makes the features more suitable for the diagonal covariance models used in our

approaches.

There is a wide range of dimensionalities in which performance is not significantly

degraded. Different ranges can be found when analyzing results. The optimal range,

that is, the one in which performance is mostly enhanced, is between 47 and 27, best

results being attained when using PCA to project PLLR features into 33 dimensions,

with 2.11 Cavg. Performance degrades slightly after that range, and starts being

severe around dimension 15, where a significant loss of information is revealed.
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Figure 4.3: Cavg and 10×CLLR performance for the PLLR-based baseline system
(with feature dimensionality=59) and systems trained on the set of PLLR features
obtained after PCA projection into different dimensionalities, on the NIST 2007

LRE primary task.

4.3 Shifted Delta PLLRs

The dimensionality reduction study showed that PLLRs could be reduced to around

15 dimensions without strongly harming performance, which is a manageable di-

mension to compute Shifted Deltas.

4.3.1 Shifted Delta Parameter Optimization

The study presented in this section focused on checking whether the application of

Shifted Delta (SD) on top of PLLRs could enhance system performance. A first series

of experiments searched for the parameter N , which sets the number of coefficients

from which derivatives are computed at each frame (see 2.2.3 for details on SD

configuration parameters). Given that 15 was the dimensionality to which features

could be projected before strongly harming performance, values around this number

were tested (13, 15 and 17). To begin with, standard configuration parameters were

selected for the rest of SD parameters (the ones commonly used in our MFCC-based

systems, that is d=2, P=3 and k=7). Results are outlined in Table 4.8.

This first set of figures showing performance of SD-PLLR feature based systems

reveal that performance can actually be enhanced by applying SD on top of PLLRs,

as the approaches trained with SD-PLLRs outperform the ones trained on PCA-

projected PLLR features. Furthermore, they also outperform the best result attained

by projecting the features by means of PCA (PLLR-PCA to 33 dimensions, 2.11

Cavg). Even though the performance of the PCA-projected PLLR system degraded

more noticeably when projecting the features to 13 dimensions (2.59 Cavg), this was
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Table 4.8: SLR performance of an i-vector system based on SD-PLLR features
using different N values on the NIST 2007 LRE 30s test set.

PCA Dim Cavg CLLR

PLLR+∆ 2.59 0.370
13

SD- PLLR 13-2-3-7 1.71 0.260

PLLR+∆ 2.23 0.330
15

SD- PLLR 15-2-3-7 1.94 0.264

PLLR+∆ 2.29 0.332
17

SD- PLLR 17-2-3-7 1.73 0.241

the optimal value found to optimize SD-PLLR system performance with regard to

N , reaching 1.71 Cavg.

Once confirmed that SD could be applied to extract relevant dynamic information

from PLLR features, optimal values for the remaining SD parameters were explored.

Table 4.9: SLR performance of an i-vector system based on SD-PLLR features,
using different P values, on the NIST 2007 LRE 30s test set.

SD-PLLR configuration Cavg CLLR

13-2-1-7 2.39 0.346

13-2-2-7 1.91 0.279

13-2-3-7 1.71 0.260

13-2-4-7 2.02 0.297

13-2-5-7 2.46 0.347

Results for systems trained using different values for the shift, parameter P , are

shown in Table 4.9. Figures show a high sensitivity with regard to this parameter,

optimal performance being found (as usual) for P = 3 (13-2-3-7).

Table 4.10: SLR performance of an i-vector system based on SD-PLLR features,
using different d values, on the NIST 2007 LRE 30s test set.

SD-PLLR configuration Cavg CLLR

13-1-3-7 2.04 0.286

13-2-3-7 1.71 0.260

13-3-3-7 2.03 0.277
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Finally, the parameter d (size of the windows) was also optimized. Values around

the standard configuration were tested once again. Performance of systems trained

with different d parameter values are shown in Table 4.10. The best results were

attained for d = 2. Therefore, the 13-2-3-7 configuration was selected as optimal on

the NIST 2007 LRE dataset.

4.3.2 Results on NIST 2011 LRE dataset

The optimal configuration found for SD parameters on the NIST 2007 LRE dataset

was used on the NIST 2011 LRE. Performance is compared to the baseline trained

on standard PLLR features (not projected). Results are shown in Table 4.11. Fig-

ures attained reveal that the application of SD on PLLRs provide a a 21% relative

improvement in terms of Cavg with regard to the baseline.

Table 4.11: SLR performance of i-vector systems based on PLLR and SD-PLLR
features, on the NIST 2011 LRE 30s test set.

System Cavg CLLR %C24
avg

Baseline 5.18 0.982 12.12

SD-PLLR 13-2-3-7 4.10 0.826 10.48

4.4 Chapter Summary

We have outlined how the PLLR feature set can be reduced to almost a third of its

original size with a little performance degradation, based on a supervised clustering

technique applied on the phone posterior space, which still keeps the meaning of the

clusters, making it a suitable approach for other possible techniques. Furthermore,

the studies presented have revealed that the sole application of PCA can enhance

the performance of the systems, probably due to the whitening of the data, making

them more suitable to the diagonal covariance models used in our approaches.

The search for an optimal (reduced) dimension has shown that PLLR features per-

form similarly when projected to a wide range of dimensions, reaching the optimal

performance for around 33 dimensions.

Finally, it has been found that shifted deltas are a nice way of introducing larger tem-

poral context information into the feature vector, providing significant performance

improvements in both NIST 2007 and 2011 LRE datasets.





Chapter 5

PLLR Feature Projection

The analysis presented in Chapter 4 dealing with several dimensionality reduction

issues, posed a couple of questions. First, why was performance so enhanced when

applying PCA? It was straightforward to understand that the decorrelation of the

features would be providing a significant improvement given the diagonal covariance

GMM models that we use in our experiments, yet, some additional underlying rea-

sons could be contributing to the enhancements. Second, why was it possible to

reduce PLLR dimensionality so much without degrading performance?

These issues brought us to start a study in order to get a better understanding of the

way the PLLRs carry information and their behavior, exploring the multidimensional

distribution of the features.

5.1 Analysis of the PLLR Feature Space

To get an insight into the PLLR feature behavior, let’s go back to the definition of

the features. The way PLLRs are computed from the phone posteriors was defined in

Equation 3.4. That is, a PLLR is defined as the logarithm of the posterior probability

ratio of a phoneme, normalized by a 1
(N−1) term. The normalization term of the

definition is useful to get an intuitive idea of the values that PLLR features may

take. With the normalization term, a PLLR > 0 would be representing a phoneme

with a posterior probability higher than the average, under the assumption that the

probability mass was equally distributed among all the phonemes. On the other

hand, a PLLR < 0 would represent a phoneme with a lower posterior probability

than the average under the same conditions. In any case, the normalization term

77



78 Chapter 5. PLLR Feature Projection

just introduces a constant offset in the value of the features (and has therefore

no effect on the results). So, for the sake of clarity, in the remaining studies, let

us redefine the features, suppressing the unnecessary normalization term 1
(N−1) .

Therefore, PLLRs can be simply redefined as phone posterior logits. Given a phone

decoder that outputs an N -dimensional vector of phone posteriors at each frame:

p = (p1, p2, . . . , pN ), such that
∑N
i=1 pi = 1 and pi ∈ [0, 1] for i = 1, 2, . . . , N , PLLRs

are now re-defined as:

ri = logit(pi) = log
pi

(1− pi)
i = 1, ..., N (5.1)
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Figure 5.1: Distributions of (a) frame-level phone posteriors and (b) frame level
phone log-likelihood ratios for the Hungarian phone a:.

As exposed in Section 3.1, PLLRs seem to overcome the non-Gaussian nature of

phone posteriors for each individual phone model. Figure 5.1 shows an example of

the distribution of phone posteriors and PLLR features for the Hungarian phone

a: (as defined in SAMPA1), for a subset of NIST 2007 LRE data. Clearly, phone

posteriors show a non-Gaussian distribution, whereas PLLR features are apparently

Gaussian distributed.

However, when the distribution of two (or more) PLLRs is analyzed, these seemingly

Gaussian distributed features show a strongly bounded shape. Figure 5.2 shows two

dimensional distributions of (a) phone posteriors, and (b) PLLRs, for three pairs of

phones. These distributions are clearly bounded by a line. Figure 5.3 illustrates the

three-dimensional distribution of (a) phone posteriors and (b) PLLRs, for the set of

phones (a:, E, O). In this case, PLLRs appear to be bounded by a convex function.

Phone posteriors range in [0, 1], but they must satisfy the second axiom of proba-

bility,
∑N
i=1 pi = 1. As a result, (and as exposed in Section 3.1) phone posteriors

1http://www.phon.ucl.ac.uk/home/sampa/hungaria.htm
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(a) (b)

Figure 5.2: Distributions of (a) phone posteriors and (b) PLLRs, for three pairs
of phones, a: vs E (red), i vs i: (black) and dz vs h (blue).

(a) (b)

Figure 5.3: Distributions of (a) phone posteriors and (b) PLLRs, for the set of
phones (a:, E, O).

lie in an (N − 1) dimensional region defined as standard (N-1) simplex, which is the

subset of points defined by:

∆(N−1) = {p ∈ RN | F(p) =

N∑
i=1

pi − 1 = 0 ∧ pi ≥ 0 ∀i} (5.2)

where F(p) is the implicit hyper-plane function.
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Given that phone posteriors range in [0,1], PLLRs would seemingly range in [−∞,∞],

but the constraint among phone posteriors is transferred into the PLLR space. From

Equations 1 and 2, we derive the hyper-surface S where PLLRs lie as:

S(N−1) =

{
r ∈ RN

∣∣∣∣∣ G(r) =

N∑
i=1

1

1 + e−ri
− 1 = 0

}
(5.3)

where G(r) is the implicit hyper-surface function.
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Figure 5.4: (a) Standard 2-simplex defined by phone posteriors in the case of a
phone decoder with 3 phonetic units. Graphs (b) and (c) show the hyper-surface

where PLLRs lie for the case of a phone decoder with 3 phonetic units.

Figures 5.4(b) and 5.4(c) show two partial views of the hyper-surface S for the case

of a phone decoder with 3 phonetic units.

The hyper-surface S is asymptotically perpendicular to the basis of PLLRs, which

explains the bounded distributions shown in Figures 5.2(b) and 5.3(b). Let’s prove

it.

The normal vector to the hyper-surface S is:

n = ∇G(r) (5.4)

where each component ni of n is given by:

ni =
eri

(1 + eri)2
(5.5)
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Let us consider the case in which a subset of phones I ⊂ {1, 2, ..., N} accounts for

most of the probability mass, that is,
∑
∀i∈I pi = 1 − ε. As these phones tend to

take all the probability mass, it follows that
∑
∀i∈I pi → 1 and ε =

∑
∀i/∈I pi → 0

(therefore, ri → −∞ ∀i /∈ I). Accordingly, for the normal vector n it holds:

lim
ε→0

ni = 0 ∀i /∈ I (5.6)

That is, the normal vector tends to lie in the subspace Q where the set of phones I
are confined. Hence, the surface is asymptotically perpendicular to any basis defined

on Q. Figures 5.4(b) and 5.4(c) illustrate the surface, and its asymptotic behavior,

for the case of a phone decoder with three phonetic units.

5.2 Projection of the Features

To avoid the bounding effect described in Section 5.1, we propose to project PLLRs

into the hyper-plane tangential to the surface at the point where all the posteriors

take the same value pi = 1
N , that is, the top of the convex surface2, where the normal

vector is:

n|ri=−log(N−1) =
(N − 1)

N
√
N
· 1̂ (5.7)

where 1̂ = 1√
N

[11, 12, ..., 1N ].

By inspecting Figures 5.4(b) and 5.4(c), it can be seen that, for the case of a decoder

consisting of 3 phonetic units, the top of the convex surface is normal to [1, 1, 1].

The tangential plane at that point is not orthogonal to any of the three asymptotic

planes defined by the PLLR surface, meaning that PLLR projections on such plane

will not be bounded.

In the general case (N dimensions), the kernel (null space) of the desired projection

is 1̂, then the matrix P used to project the data into the selected hyper-plane is

given by:

P = I− 1̂′ ∗ 1̂ (5.8)

2In the case of the original PLLR definition, this point would be located at the origin [0,0,...,0]
in the PLLR space. In the case of the new the logit re-definition of PLLRs, this point is located at
[ 1
N−1

, 1
N−1

,..., 1
N−1

].
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Figure 5.5 shows the transformation (projection) of the PLLRs displayed in Figures

5.2(b) and 5.3(b) into the new basis. No bounds can be observed in the distribution

of the projected features.

(a) (b)

Figure 5.5: Distribution of the PLLRs shown in Figures 2(b) and 3(b) after
projecting them into the defined hyper-plane tangential to the surface at the

point [1/N, 1/N, ..., 1/N].

5.2.1 Feature Decorrelation

Finally, in order to decorrelate the parameters, we apply PCA on the transformed

PLLRs, so that they are more suitable for the diagonal covariance Gaussian Mixture

Model (GMM) that we are using as Universal Background Model (UBM) in our

approaches. Since the projected features lie on an (N − 1)-dimensional hyper-plane,

the number of non-zero eigenvalues of the PCA projection matrix will be N − 1.

Therefore, the dimensionality of the feature vectors, after PCA, will be reduced by

one.

5.2.2 Results on the NIST 2007 LRE dataset

Table 5.1 shows results for the baseline system, trained on the original set of PLLR

features, and the ones attained for the system trained on the proposed projected

features, as well as the figures attained after application of PCA.

The projection of the features clearly enriches the information retrieved by the set

of features, as it leads to a 19% relative improvement in terms of Cavg with regard to

the baseline, reaching 2.31% Cavg. The decorrelation of the features helps enhancing
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Table 5.1: %Cavg and CLLR performance (and relative improvements) for the
PLLR i-vector baseline system, and systems using projected PLLR features on

the NIST 2007 LRE primary evaluation task.

PLLR System Dim. %Cavg (r.i.) CLLR (r.i.)

Baseline 59 2.86 0.389

Projection 59 2.31 (19%) 0.320 (18%)

Projection+PCA 58 2.10 (27%) 0.310 (20%)

59 2.24 (22%) 0.321 (17%)
PCA

58 2.26 (21%) 0.319 (18%)

system performance, providing a further 7% relative improvement with regard to the

baseline, attaining 2.10% Cavg.

More experimentation was performed to check the benefits of the method. It could

be the case that PCA would not only decorrelate the feature space, but that as a side

effect of the rotation it produces, it may be also suppressing the bounding effects in

an unsupervised way. To check this, two experiments were carried out by applying

PCA on the original (non-projected) features.

First, PCA was applied on the original (non-projected) features without dimension-

ality reduction, which does provide a gain comparable to that attained with the

projection method, presumably attributed to a combination of both effects: decor-

relation and rotation. Applying PCA and reducing the dimensionality to 58 dimen-

sions provides no gain with regard to PCA without dimensionality reduction, that

is, reducing one dimension by PCA has not the effect achieved by the projection

method. This means that reducing one dimension by PCA is not equivalent to the

projection method (because the latter is a singular linear transformation). This can

be further confirmed by the fact that the minimum variability direction estimated on

the original feature space (the one removed by PCA) is not related to the kernel of

the projection method proposed in our approach (i.e. vector 1̂ in Eq. 5.7). Actually,

the direction removed by the proposed method is closely related to the maximum

variability direction identified by means of PCA.

Different results are obtained by applying PCA on the original and on the projected

features. The combination of the proposed projection, which ensures the removal of

the bounding effect, and subsequent decorrelation by means of PCA yields the best

result overall.
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5.2.3 Results on the NIST 2009 LRE dataset

The merits of the projected PLLR features were also tested in other NIST LRE

benchmarks. Table 5.2 presents results for the baseline system, trained on the orig-

inal set of features, and the results for the system trained on the projected+PCA

PLLR features, as well as figures for acoustic and phonotactic systems, and different

fusions of them, to check the complementarity of the new set of features and the

possible benefits it could provide compared to the baseline.

Table 5.2: %Cavg and CLLR performance for the PLLR i-vector baseline systems,
systems using PLLR projected features, acoustic MFCC and phonotactic systems

and fusions of them on the NIST 2009 LRE primary evaluation tasks.

Dataset System %Cavg CLLR

PLLR (a) 2.42 0.505

PLLR+Projection+PCA (b) 2.19 0.443

Acoustic MFCC (c) 2.70 0.535

Phonotactic (d) 2.49 0.502

(c)+(d) 1.67 0.346

(a)+(c)+(d) 1.48 0.321

2009
LRE

(b)+(c)+(d) 1.42 0.307

As for the NIST 2007 LRE, the system trained on the projected PLLRs performs

significantly better than the baseline. The fusion of the acoustic and phonotactic

systems with the projected-PLLR system attains a slight improvement with regard

to the combination of the acoustic, phonotactic and baseline PLLR systems, more

pronounced on when comparing them in terms of CLLR.

5.2.4 Results on the NIST 2011 LRE dataset

A comparison of SLR performance of systems trained on different sets of PLLR

features for the NIST 2011 LRE is shown in Table 5.3. Fusions of PLLR systems

with baseline acoustic and phonotactic systems are shown too.

The relative improvement attained with the projection of the features is pronounced

in this benchmark, obtaining a 17% relative improvement with regard to the base-

line. Regarding fusions, once again, the fusion of the acoustic, phonotactic and

projected PLLR system gets a remarkable improvement with regard to the fusion of

the acoustic and phonotactic systems with the baseline PLLR system, a relative 9%

in terms of Cavg.



5.3. Projected PLLRs in Noisy Environments 85

Table 5.3: %Cavg and CLLR performance for the PLLR i-vector baseline systems,
systems using PLLR projected features, acoustic MFCC and phonotactic systems

and fusions of them on the NIST 2011 LRE primary evaluation tasks.

Dataset System %Cavg CLLR %C24
avg

PLLR (a) 5.18 0.981 12.12

PLLR+Projection+PCA (b) 4.30 0.824 11.33

Acoustic MFCC (c) 5.95 1.088 13.56

Phonotactic (d) 7.15 1.280 14.28

(c)+(d) 4.34 0.823 10.43

(a)+(c)+(d) 3.63 0.714 9.14

2011
LRE

(b)+(c)+(d) 3.33 0.667 8.91

5.3 Projected PLLRs in Noisy Environments

In collaboration with the Brno University of Technology, the projected PLLR fea-

tures were tested on the challenging noisy RATS benchmark [117].

Given that despite the RATS evaluation program comprised 120, 30, 10 and 3s

segments, LDC only provided 120s signals for training and testing (see Section 2.1

for details), this study [116] made use of specific training and development sets

constructed by making cuts of 120s signals, where main training, extended training,

development and calibration sets were defined [99].

Two hybrid NN/HMM phone decoders were used to estimate three state frame-by-

frame posteriors. The two decoders were trained for Levantine Arabic (LE) and

Czech, using RATS LE keyword search data and Czech CTS data, respectively,

including data corrupted with noise at 10dB level, respectively. The phone decoders

feature 36 (LE) and 38 (CZ) phonetic units.

To compute the PLLRs, first the states corresponding to the same phonetic unit were

merged, following 3.1. PLLRs were computed according to Equation 5.1, augmented

with first order deltas, and projected using the procedure presented in Section 5.2,

leading to a 74 dimensional feature vector for CZ and a 70 dimensional feature vector

for LE.

The systems were based on an i-vector approach, using a diagonal covariance 2048

dimensional GMM-UBM, and the total variability matrix was trained on the main

training set, featuring 600 dimensional i-vectors.
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Two different classifiers were used then to build two different systems: Logistic

Regression (LR) and Neural Networks (NN). The multiclass regularized logistic re-

gression classifier (based on [14, 18]) was trained on the main training set with

within-class covariance normalization conditioned i-vectors. The NN classifier was

based on a three layer NN, with 300 neurons in the hidden layer and 6 outputs (5

target + 1 non-target languages). The NN was trained on the extended training set.

Logistic regression calibration parameters were estimated on the calibration set.

5.3.1 Baseline Systems

The acoustic baseline system was based on the i-vector approach, using 20 cepstral

PLP2 coefficients [63, 90] augmented with ∆ and ∆∆s, obtaining a 60 dimensional

feature vector. The system used the same configuration and training sets as the

ones used by the PLLR-based system, that is, diagonal covariance 2048 component

GMM-UBM and 600 dimensional i-vectors.

The phonotactic system was based on the Subspace n-gram Modeling (SnGM) ap-

proach with a 600 dimensional subspace estimated over trigram counts trained using

regularized multinomial space, as described in [142]. Hard pruning of low-frequency

trigrams was applied to reduce problems caused by data sparsity. 600 dimensional

i-vectors were estimated, as point estimates of latent variables representing the input

utterance dependent n-gram model.

Both systems were used also to train LR and NN classifiers. Logistic regression

calibration parameters were estimated on the calibration set.

5.3.2 Results on the RATS dataset

Results attained with all the systems under the LR-classifier approach are presented

in Table 5.4. Figures show that both LE and CZ PLLR systems outperform the

PLP2-based i-vector approach. Also, PLLR systems outperform their respective

phonotactic approaches (that is, the one based on the same phone decoder). Overall,

the PLLR-LE system attains the best performance in most conditions, that is, 120s,

30s and 10s, and is only beaten (by a small margin) on the 3s condition by the

PLLR-CZ system.

Performance of the systems based on NN classifiers are shown in Table 5.5. The

approaches based on NN outperform in all cases the systems based on LR classifiers.

Performance figures are consistent with those attained using the LR classifier. Once

again, PLLR systems outperform the PLP2-based i-vector approach, and also the
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Table 5.4: %Cavg performance for the PLP2, SnGM and PLLR systems with
logistic regression classifiers on the RATS evaluation set for the 120s, 30s, 10s

and 3s signals.

System 120s 30s 10s 3s

PLP2 7.72 11.69 16.39 23.04
SnGM-LE 5.86 12.28 18.53 26.45
SnGM-CZ 8.59 15.76 20.89 27.95
PLLR-LE 4.56 7.98 12.61 21.48
PLLR-CZ 6.95 10.76 15.13 21.32

phonotactic approaches in most cases. PLLR-LE is the system achieving the best

performance in all conditions.

Regarding fusions, the fusion of the two PLLR systems attains good results in all

conditions, as well as the fusion of both LE phone decoder-based systems. The

fusion of the LE systems with the PLP2 approach attains a significant gain for short

duration utterances (10s and 3s). Finally, the fusion of all systems, still provides

some slight improvements in some conditions.

Table 5.5: %Cavg performance for the PLP2, SnGM and PLLR systems with
neural network classifiers on the RATS evaluation set for the 120s, 30s, 10s and

3s signals.

System 120s 30s 10s 3s

1 PLP2 7.21 9.21 12.43 18.58
2 SnGM-LE 5.53 9.34 15.61 22.76
3 SnGM-CZ 7.23 10.46 15.38 24.05
4 PLLR-LE 5.37 7.31 11.46 17.63
5 PLLR-CZ 5.81 8.83 12.30 19.52

Fusions 120s 30s 10s 3s

4+5 5.19 6.79 10.14 16.04
1+4 5.80 6.43 8.69 15.37
2+4 5.12 6.61 10.48 16.93
3+5 5.74 8.33 11.28 18.11
1+2+4 5.38 6.31 8.53 14.90
1+4+5 5.29 6.43 8.71 14.65
1+2+3+4+5 5.59 6.21 8.75 14.37
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5.4 Shifted Delta Projected PLLRs

Given the results attained with systems trained on the reduced set of PLLR features

augmented with Shifted Deltas, the same transformation was applied on top of the

projected set of PLLR features, to check the possible enhancement it could provide.

5.4.1 Results on the NIST 2007 LRE dataset

Table 5.6: Cavg × 100 and CLLR performance for the Projected PLLR + PCA,
Projected PLLR + PCA reduced and Projected PLLR + PCA reduced + SD

approaches on the NIST 2007 LRE primary evaluation tasks.

PLLR System %Cavg CLLR

Projection + PCA 58 2.10 0.310

Projection + PCA 13 2.43 0.330

Projection + PCA 13 + SD 1.52 0.225

Table 5.6 shows results of the system trained with the projected features, the one

trained with the projected and reduced set of features, and the one trained with

projected, reduced and augmented with SD features on the NIST 2007 LRE dataset.

As expected, performance degraded when reducing the dimensionality of the set of

features, from 2.10 to 2.43 in terms of Cavg, and significantly enhanced when using

SD, reaching 1.52 Cavg.

Figure 5.6 represents graphically the performance of the baseline system in terms

of Cavg and improvements attained at each step, that is, the gain attained when

projecting the features (a relative 19%), after the decorrelation of the parameter

space (a further 7% with regard to the baseline) and after augmenting the features

with SD (another 20%). The system trained with the fully transformed features

(after the three step process) attains an overall 47% relative improvement with

regard to the system trained with the original PLLR features.
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Figure 5.6: Cavg × 100 performance for the Baseline (blue), Projected PLLR
(red), Projected PLLR + PCA 58 (green) and Projected PLLR + PCA 13 + SD

(purple) approaches.

5.4.2 Results on the NIST 2011 LRE dataset

Table 5.7 shows results of the system based on projected+SD features on the NIST

2011 LRE dataset. Comparing the results attained by the SD-PLLR based sys-

tem, using 13-2-3-7 SD parameter configuration with those attained by the system

trained on the projected PLLR features, SD-PLLR features appear to be less in-

formative. All the experimentation performed with the features in previous studies

has shown that SD computation on top of PLLRs is beneficial to improve system

performance. Therefore, the intuition for the reason behind these results was that

the dimensionality reduction applied on top of the projected features was degrading

system performance further than in other datasets, and that SD application was not

improving performance enough to recover that loss. With the aim of testing this

fact, other two systems were trained, based on SD-PLLR features, but computed

from PLLRs reduced to not so small dimensions, using 15-2-3-7 and 17-2-3-7 SD

parameter configurations. The figures attained by the SD-PLLR based system us-

ing 15-2-3-7 SD parameter configuration range close to those of the baseline system.

The system trained on SD-PLLR features with 17-2-3-7 SD parameter configuration

outperforms the baseline, reaching 3,80% in terms of Cavg, which is the best result

attained by a single system for this benchmark, and confirms that the PCA dimen-

sionality reduction should be optimized for each dataset, before SD computation.
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Table 5.7: Cavg × 100, CLLR and %C24
avg performance for the Projected PLLR

+ PCA, and Projected PLLR + PCA reduced + SD approaches for 13, 15 and
17 dimensionalities on the NIST 2011 LRE primary evaluation tasks.

PLLR System %Cavg CLLR %C24
avg

Projection + PCA 58 4.30 0.824 11.33

Projection + PCA 13 + SD 4.84 0.916 12.49

Projection + PCA 15 + SD 4.39 0.833 11.26

Projection + PCA 17 + SD 3.80 0.756 9.52

5.5 Chapter Summary

The projection of PLLR features has been found as an effective way of extracting

relevant information for SLR tasks, providing significant performance improvements

in all benchmarks.

The study of the use of PLLR features (under different approaches) in noisy envi-

ronments has revealed that these features are robust against channel mismatch and

noisy conditions.

Finally, the application of shifted deltas on top of the projected features has also

brought further improvements in performance, confirming that the use of dynamic

information in large temporal contexts (regardless of the feature representation)

provides relevant information for SLR.

The studies performed in previous chapters, have focused on the search for an opti-

mal PLLR extraction procedure. According to the results attained, to summarize,

the optimal approach for PLLR computation would comprise:

• Selection of a phone decoder with high phonetic coverage

• Estimation of PLLRs as defined in Equation 5.1

• PLLR feature projection following the procedure described in Section 5.2, using

the projection matrix defined in Equation 5.8

• PCA projection performing dimensionality reduction optimization for the database

• SD computation on top of the projected and reduced set of PLLRs



Chapter 6

PLLRs for Speaker

Recognition

Speaker and language recognition are closely related pattern recognition tasks that

share not only the main structure of the systems, but, as it was outlined in Chapter 2,

many processing aspects such as features, modeling techniques, scoring procedures,

etc. Despite all the similarities, common methods and mutual resemblances that can

be found among them, there are yet significant differences, which make both tasks

challenging in different ways.

• The amount of training data that can be gathered for different speakers is not

comparable to the training data that can be found for different languages. It

is therefore straightforward that the training stages must differ significantly,

as the speaker related tasks pose an extra difficulty for not having that much

data (meaning positive samples) to rely on.

• Feature extraction, even when based on the same kind of features, uses different

tunings and configurations on the extraction stage, as the information that is

willing to be found is speaker-specific information. That is, features related

with the speaker physiological characteristics such as vocal folds, length and

shape of the vocal tract, pitch, energy, etc. Other high-level characteristics

are related to the personal lexicon, accent, pronunciation, etc. that could help

differentiating them from others. These high level features are not very used

in the literature given the level of complexity that the extraction implies.

• Language Recognition has been usually treated as a multi-class recognition

task while speaker recognition is established in most challenges as a binary

91
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decision task, which makes a difference in the scoring and backend stages as

well as in the metrics used to evaluate the systems.

Besides, both tasks are conceptually different, given that speaker recognition systems

are usually trained with data of speakers different to those of the test set, whereas

language recognition systems normally rely on data of the languages they are going

to be tested with. A language recognition task aiming to recognize a language

without training data available for it would render the usual SR scenario in a SLR

task, as proposed in the Albayzin 2012 LRE [123].

This Chapter explores the possible benefits of using PLLR features in a speaker

recognition task. To that purpose, first, we provide a short overview of state-of-the-

art speaker recognition, focusing on the differences with regard to spoken language

recognition. Then, we proceed to check test the performance of PLLR features in

SR tasks.

6.1 State-of-the-art Speaker Recognition

This section will cover state-of-the-art Speaker Recognition (SR) techniques not

shared with spoken language recognition. Details are provided for datasets, feature

extraction, modeling techniques and evaluation metrics.

6.1.1 Datasets

The available data for speaker recognition has grown considerably in terms of number

of datasets and also regarding database size, specially considering the number of

speakers per database. LDC has a relevant collection of databases built for this

purpose, which date from 1993. Great efforts have been made in terms of data

collection, from those first datasets used on the nineties, which involved around

2400 conversations among 500-600 speakers, to the ones that can be found nowadays,

amounting to tens of thousands signals and thousands speakers, and involving test

sets with upper bounds rounding 106 or even 108 trials. There are plenty of resources

in different languages designed for SR tasks [2, 102].

NIST SRE Benchmarks

As happened for SLR, NIST also contributed significantly to the advances of SR

providing benchmarks and challenging evaluations in a regular basis to the research
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community. Starting in 1997, NIST organized speaker recognition evaluations yearly

until 2006, and every two years ever since, until 2012.

NIST SRE started focusing only on speaker detection tasks, which would involve

either same handset or different handset test trials and test segments of 3, 10 or 30s.

In the following years the evaluations evolved, not only in terms of the amount of

training data and test segments provided, which kept growing over the years, but

also in terms of evaluation tracks and challenges.

In 1997 speaker detection was introduced, in which data segments would include

conversational speech from telephone calls. Speaker tracking was introduced in 1999,

in which participating groups had to detect a specific speaker as a function of time.

In 2000, speaker segmentation was launched as a new task, in which several (an

unknown number of) speakers had to be identified and tracked in each test segment.

Other interesting conditions were also evaluated over the years, which would vary

the amount of available training data for each target speaker, speaker detection in

speech signals of other languages, etc. In 2002, speaker detection tests started cov-

ering multi-device and/or multi-channel conditions. Besides telephone data, inter-

views (such as broadcasts and meetings) were also used for the speaker segmentation

tracks.

In 2003, SRE finally concentrated simply on speaker detection tasks, with distinc-

tions between limited data and extended data training. After that, evaluations

focused on the same task, providing several training and test conditions, with one

as the core test mandatory track for all participants and others as optional. The

conditions covered different durations for training and test utterances, different num-

ber of single channel conversation sides for each speaker (2004), and two-channel or

summed channel conversations (2005, 2006). The NIST 2008 SRE included, besides

the usual telephone conversational excerpts recorded over telephone channels, tele-

phone data recorded over microphone channels and conversational speech data from

interviews recorded over room microphone channels. The inclusion of this kind of

data also allowed a new evaluation track, involving longer utterances recorded from

microphone channels. In 2010, NIST introduced high vocal effort and low vocal

effort speech.

In the last SRE, carried out in 2012, even though the main task remained the

same, several factors changed compared to previous evaluations. For the first time,

knowledge of all target trials was allowed to obtain the trial score. Besides, new

tracks were included, which made a difference among known and unknown test

trials, that is, test segments for which the system could assume that the non-target

trials were produced by known or unknown speakers. In this evaluation, some test

segments included also additive noise, which posed a new demanding challenge.
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MOBIO

MOBIO is a challenging audio and video database created on collaboration between

six sites in five different countries [91, 101], containing speech from 152 speakers,

covering both spontaneous and non-spontaneous speech captured by mobile devices

(mobiles and laptops). A system based on PLLR features was trained and presented

to the speaker recognition MOBIO 2013 (for details see Appendix B).

6.1.2 Feature Extraction

Most SR systems are based on short-term spectral low-level features, which model

vocal-tract properties and the spectral envelope of the sounds [86]. Around the

nineties, when the use of high level features gained strength in SLR, numerous

works were carried out with the aim of making use of phonotactic information also

for speaker recognition, and loads of efforts were made to optimize these features for

SR based on the idea that different speakers can be characterized by their vocabulary,

accent, pronunciation and other linguistic and speaker dependent behavioral features

[86].

Systems trained on these high level features proved to provide complementary in-

formation [119], but didn’t reach the performance that systems based on low-level

acoustic features can attain in SR tasks. In the literature, there can be found studies

about speaker specific vocabulary [58], the application of phone/word n-grams ob-

tained from phonetic/word decoders [25], and more recently the use of prosodic fea-

tures [11, 87]. Nowadays, MFCC still stand out as the most common representation

[23], though competitive state-of-the-art systems tend to rely on the combination of

several low-level features [60, 72].

6.1.3 Modeling

Speaker and language recognition tasks share most of the modeling techniques. Ac-

tually, most of the spectral feature based modeling techniques applied in language

recognition have been historically introduced for SR tasks [82], [80], [40], and then

adapted for SLR. This way, the modeling and channel compensation techniques pre-

sented in sections 2.3 and 2.4, such as GMM-UBM, SVMs, NAP, eigenchannels, JFA

or i-vectors, are extensively used also for speaker recognition.

Despite the similarities, some modeling approaches have been specifically developed

and largely applied to speaker recognition. That’s the case of Probabilistic Linear

Discriminant Analysis (PLDA).
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Probabilistic Linear Discriminant Analysis

The Gaussian PLDA approach, introduced for face detection in [118], aims to sep-

arate the undesired variability contained in the observed data and model only the

desired variability information to perform recognition. In our case, an observation

j corresponding to an i-vector of a speaker i is supposed to be modeled by:

wij = Vyi + Uxij + zij (6.1)

where:

yi ∼ N (0, I) (6.2)

xij ∼ N (0, I) (6.3)

zij ∼ N
(
0,D−1

)
(6.4)

where D is a diagonal precision matrix and the hidden variables yi and xij are the

speaker and channel factors, respectively [15], while zij is the noise term accounting

for the rest of the variability. The model M = (V,U,D) is estimated by EM.

Extensive work has been made to optimize PLDA for SR. For instance, heavy tailed

distributions were introduced to try to deal with some problems produced by outliers

when using Gaussian modeling [81]. In [24], discriminative training for PLDA func-

tion parameters is introduced. In [153] the effect of using a common speaker space

distribution for all channels, but channel dependent channel space distributions, has

been also explored.

6.1.4 Evaluation Metrics

This section will briefly describe the evaluation measures that are typically used in

SR. The EER and DET curves which have already been presented as metrics in

state-of-the-art SLR (see Section 2.7 for details), are evaluation metrics commonly

used in (and actually more suitable for) SR tasks. The new metrics presented in

this section are based on measures presented in section 2.7 and terminology will be

used accordingly.
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Detection Cost Function (ActDCF)

The detection cost function has been the main evaluation measure in speaker detec-

tion tasks from NIST evaluations [4]. The metric is defined as a weighted sum of

miss and false alarms, as follows:

CDet = Cmiss × Pmiss × PT + Cfa × Pfa × (1− PT ) (6.5)

To get a meaningful value (easy to understand and compare), CDet is normalized by

the best (lowest) cost it could be attained without processing the trials:

CDefault = min

{
Cmiss × PT
Cfa × (1− PT )

}
(6.6)

CNorm = CDet/CDefault (6.7)

NIST evaluations used as cost model parameters Cmiss=Cfa=1 and PT=0.001 until

2008. In NIST 2010, cost model parameters were set to Cmiss=10, Cfa=1 and

PT=0.01, focusing system performance on a low false alarm error region.

Primary Cost Function in 2012 SRE

In 2012 SRE, NIST proposed a new metric dependent on the a priori probabilities for

the known/unknown non-target speakers, that took into account the cost functions

attained at both operating points: the old values used until 2008 (α1) and the new

parameter cost values defined in 2010 (α2) [5], in this way:

CDet = Cmiss×Pmiss×PT +Cfa× (1−PT )× (Pfa|K×PK +Pfa|NK×PNK) (6.8)

where PK is the a priori probability for a non-target speaker to be one of the eval-

uation target speakers (and PNK = 1− PK). The final metric is defined as:

Cprimary =
CNorm(α1) + CNorm(α2)

2
(6.9)
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6.2 Phone Posteriors for Speaker

Characterization

Several works have explored how to make use of high level features for speaker

recognition In the 2003 Johns Hopkins University (JHU) Summer Workshop, an

extensive study was made with the aim of exploiting these features for SR [119], with

results not as successful as in language recognition (compared to acoustic approaches

in SR). Phone decoder phoneme posterior features have been used to build n-gram

models also for speaker recognition [25]. Other works aiming to employ high-level

information are also focusing on prosodic features for SR [39, 85, 138].

With regard to the use of phonetic features for SR, in a work where the merits of

multilayer perceptron based phoneme recognizer features for a SLR system are pre-

sented [154], it is stated that phoneme posterior features are speaker independent

if enough amount of all kinds of speakers are used in the training stage. However,

each speaker, due to unique physical characteristics, produces speech sounds in a

different way. Speech disfluencies are also distinctive of each speaker, and can be

used for discrimination. A phone decoder can be seen as a reference system for rep-

resenting the speech sounds of any speaker in terms of the activation of its phonetic

units, which include both static and dynamic information that would help catching

the subtle differences between sounds uttered by each speaker. The goodness of this

representation will depend on the richness of the inventory of phonetic units handled

by the phone decoder, which can be selected regardless of the spoken language.

To check whether speaker dependent information is present in phonetic posteriors (or

how much), a proof-of-concept experiment was carried out, using the TIMIT dataset

[161] and the open software TRAPs/NN phone decoder for Hungarian, developed

by the Brno University of Technology (BUT) [137].

Figure 6.1 shows the comparison of phone usage/recognition for a set of 7 speak-

ers uttering the same English sentence. The Figure shows usage differences among

speakers in some phones, covering different kinds of sounds including sets of conso-

nants and vowels. To compute the values represented in the Figure, the following

procedure was used:

Let p(i|t, s) be the phone posterior probability of a phone model i (1 ≤ i ≤ N) at the

frame t, for a sentence uttered by speaker s. First, phone posteriors of each phone

were averaged:

p(i|s) =
1

T (s)

T (s)∑
t=1

p(i|t, s) (6.10)
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where T (s) is the number of frames of the sentence uttered by speaker s. Next, as

some phonemes are more frequent than others (e.g. vowels would be more frequent

than consonants), phone usages were scaled to the same range, obtaining normalized

average posteriors for the set of speakers:

p̂(i|s) =
p(i|s)
S∑
s=1

p(i|s)
(6.11)

where S is the number of speakers.

Figure 6.1: Normalized average posteriors p̂(i|s) (see Equation 6.11) of seven
Hungarian phones on the same utterance (sx9) of the TIMIT dataset for 7 dif-
ferent speakers. The subset of phones represents fricative labiodental consonants
(f and v) and a subset of vowels (e:, :2, 2, O, u), as defined in the International

Phonetic Alphabet.

Figure 6.1 reveals significant usage differences for some phones. When comparing

the usage of consonants, results suggest that one speaker tends to use ”f” over

”v”. Regarding the vowels, there seems to be a set of 2-3 speakers that overuse or

prolongate the vowels ”e:”, ”:2” and ” 2” with regard to the rest of speakers, whereas

the vowels ”O” and ”u” are almost equally used/pronounced by all of them. These

could be intrinsic characteristics of the speakers and could therefore be used for

identification.

6.3 Experimental setup

In this section system configuration details are provided.

Datasets

For the SR experiments with PLLR-based systems, two benchmarks were used: the

NIST 2010 and 2012 SRE datasets.
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Both datasets comprised 5 evaluation tracks (each), containing data recorded/trans-

mitted in different ways. Here is a summary of the core conditions of both SRE:

NIST 2010

1. Interview, same microphone in training and test

2. Interview with different microphone in training and test

3. Interview training, telephone test

4. Interview training, telephone test recorded over microphone

5. Telephone in training and test

NIST 2012

1. Interview with no added noise

2. Telephone with no added noise

3. Interview with added noise

4. Telephone with added noise

5. Telephone recorded in noise

Database configuration details are provided in Appendix A. Given the noisy nature

of the signals for conditions 1, 3 and 4 in NIST 2012 SRE, and considering that no

noise reduction technique was applied to the signals, for this dataset experimental

results are only shown for core conditions 2 and 5, where results are more likely to

be reliable (and less degraded than in other conditions).

PLLR Feature Extraction

As for the spoken language recognition experiments, the BUT TRAPs/NN phone

decoder for Hungarian was used to compute the PLLR features. Voice activity

detection was performed by removing the feature vectors whose highest PLLR value

corresponded to the integrated non-phonetic unit (see section 3.2 for details).
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MFCC Feature Extraction

MFCC features were computed with a standard configuration for SR systems. Frames

of 25 ms at intervals of 10 ms were considered to estimate 13 MFCC coefficients,

including the zero (energy) coefficient. Cepstral Mean Subtraction (CMS) and Fea-

ture Warping [104] were applied on cepstral coefficients. The feature vector was

augmented with dynamic coefficients (first-order and second-order deltas), resulting

in a 39-dimensional feature vector. Voice activity detection was performed as in the

PLLR system, using the integrated non-phonetic PLLR unit.

i-vector PLDA Configuration

No special treatment was applied to the signals containing additive noise, the Qual-

comm-ICSI-OGI (QIO) [10] noise reduction technique (based on Wiener filtering)

was independently applied to all audio streams.

Gender dependent 1024-mixture GMMs were trained as UBMs, with diagonal co-

variance matrix and using binary mixture splitting, orphan mixture discarding and

variance flooring. Gender dependent 500 dimensional Total Variability matrices

were estimated for each system on each training set. The i-vectors were centered,

whitened and length-normalized [64].

A standard PLDA modeling approach was used, where gender dependent PLDA sys-

tems [16] were estimated using a speaker subspace of size 150, a channel subspace

of size 400 and 20 Expectation Maximization/Minimum Divergence (EM-MD) iter-

ations.

PLDA outputs were directly used as scores for the NIST 2010 experiments.

For the NIST 2012 SRE, scores were post-processed, given that knowledge of other

target speakers could be used on the scoring stage. PLDA system scores s (u, t)

corresponding to a test utterance u and a training signal t were interpreted as log-

likelihoods, that is: s (u, t) ≡ log p (u | t), and the likelihood p (u | i) for a speaker i

was computed as the average likelihood over all the training signals of that speaker

[49]:

p (u | i) =
1

|Train (i)|
∑

t∈Train(i)

es(u,t) (6.12)

Finally, verification scores were computed as closed-set log-likelihood ratios:
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s (u, i) = log
p (u | i)

1
N−1

∑
j 6=i p (u | j)

(6.13)

Fusion and Calibration

The BOSARIS toolkit [19] was used to estimate and apply calibration and fusion

parameters. The whole training set was used for the estimation of calibration and

fusion parameters.

Given that each evaluation had different application costs, calibration parameters

were optimized for each dataset. For NIST 2010 SRE experiments, the system was

calibrated using Pfa = 0.01, Cmiss = 10, Cfa = 1. For NIST 2012 SRE experiments,

the system was calibrated using Pfa = 0.001, Cmiss = 1, Cfa = 1.

6.4 Search for the Optimal PLLR Feature

Configuration

As for spoken language recognition, a development study was carried out to optimize

the PLLR feature extraction parameters for SR. The study was performed on the

NIST 2010 SRE dataset.

Dynamic coefficients

First of all, the effect of dynamic coefficients was tested on top of the PLLRs. Table

6.1 shows results for the system trained only on PLLR features, PLLRs augmented

with first order (∆) dynamic coefficients and PLLRs augmented with first and second

order dynamic coefficients (∆∆).

Table 6.1: MinDCF performance of systems using only PLLR features and
PLLR features augmented with dynamic coefficients on the NIST 2010 SRE core

conditions.

Core Condition
SYSTEM

(1) (2) (3) (4) (5)

PLLR 0.683 0.811 0.889 0.697 0.864

PLLR+∆ 0.653 0.804 0.862 0.690 0.848

PLLR+∆+∆2 0.702 0.834 0.904 0.745 0.852
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As in the case of SLR, the use of first order deltas improves system performance,

whereas the use of second order coefficients degrades results. In experiments reported

below, PLLR+∆ are therefore used in all PLLR systems.

Variability compensation

Table 6.2 shows the performance of the PLLR-based system using different variability

compensation techniques at the feature extraction stage, that is, RASTA filtering,

Feature Warping (FW) and Mean and Variance Normalization (MVN). Except for

the case of FW in the core condition 5 (telephone in training and test), none of

the techniques outperforms the baseline system trained only on PLLR features with

no variability compensation technique applied. Therefore, none of the techniques

studied in this section will be used when computing the features in the experiments

reported below.

Table 6.2: MinDCF performance of systems using PLLR features under different
configurations on the NIST 2010 SRE core conditions.

Core Condition
SYSTEM

(1) (2) (3) (4) (5)

PLLR+∆ 0.653 0.804 0.862 0.690 0.848

(PLLR+∆)+RASTA 0.830 0.903 0.951 0.892 0.982

(PLLR+∆)+FW 0.740 0.859 0.883 0.757 0.794

(PLLR+∆)+MVN 0.735 0.852 0.869 0.750 0.821

PLLR feature projection

Table 6.3 presents results of the systems based on PLLR and projected PLLR fea-

tures.

Table 6.3: MinDCF performance of systems using PLLR and projected PLLR
features on the NIST 2010 SRE core conditions.

Core Condition
SYSTEM

(1) (2) (3) (4) (5)

PLLR+∆ 0.653 0.804 0.862 0.690 0.848

Projected PLLR+∆ 0.671 0.823 0.912 0.802 0.913
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Unlike for SLR, in SR the projection of the features does not enhance the perfor-

mance of the system. This fact, must be related to the information contained in the

direction [1,1,...,1] that is “suppressed” when projecting the features, the one related

to the normal vector of the hyperplane to which the features are projected (see Sec-

tion 5.2 for details). Given that the projection is a reversible transformation, the

information remains in all the other directions after the projection (the info is not

discarded nor deleted), but it cannot be directly modeled. The inability to directly

model that information seems to be disadvantageous for SR.

6.5 Overall Performance of PLLR Based Systems

This section presents and briefly analyzes results for PLLR based systems using the

optimal configuration discussed in the previous section, on the NIST 2010 and 2012

SRE datasets.

6.5.1 Results on the NIST 2010 SRE dataset

First, the PLLR system was tested on the NIST 2010 SRE dataset, compared and

fused with the MFCC-based system. Figures attained are shown in Table 6.4. The

performance of the PLLR-based i-vector system is far from the one attained by the

MFCC-based i-vector system. Depending on the condition, the EER doubles or

even triples the one attained by the acoustic system. Nevertheless, quite good per-

formance is attained by the PLLR-based system compared to those usually attained

by phonotactic systems on SR tasks [25].

When focusing on the results attained by the fusion of both systems, the contri-

bution of PLLRs is remarkable, as the help improving MinDCF performance in

all conditions with a relative improvement with regard to the MFCC-based system

ranging from 7% to 16%. They also help improving EER in all but core condition

4, providing up to a 25% relative improvement (core condition 1).

6.5.2 Results on the NIST 2012 SRE dataset

The same tests were carried out on the NIST 2012 SRE dataset to check the con-

tribution of the PLLR-based i-vector system. Results are shown in Table 6.5 for

core conditions 2 and 5, which involve telephone recordings with no added noise and

recorded in noise, respectively. Results are similar to those attained on the NIST

2010 SRE dataset. The performance of the PLLR-based system is worse than the

one of the MFCC-based system, but their fusion provides a gain with regard to the
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Table 6.4: Results of i-vector /PLDA SR systems based on MFCC and PLLR
features, and the fusion of them, on the NIST 2010 SRE core conditions.

Condition System EER MinDCF ActDCF

MFCC 1.86 0.417 0.439

PLLR+∆ 4.05 0.653 0.854(1)
Interview

same microphone
in training and test Fusion 1.40 0.363 0.367

MFCC 2.99 0.562 0.633

PLLR+∆ 6.39 0.804 0.819(2)
Interview

different microphone
in training and test Fusion 2.36 0.492 0.553

MFCC 3.63 0.625 0.848

PLLR+∆ 9.20 0.862 0.978(3)
Interview training

telephone test
Fusion 3.25 0.522 0.874

MFCC 1.71 0.443 0.475

PLLR+∆ 5.52 0.690 0.703(4)
Interview training

telephone test
rec. over microphone Fusion 1.69 0.372 0.406

MFCC 4.64 0.600 0.712

PLLR+∆ 8.41 0.848 0.869(5)
Telephone

in training and test
Fusion 4.29 0.560 0.688

acoustic system (up to a 21% relative improvement in terms of EER), suggesting

that PLLR features contain complementary information that can be used for SR.

Table 6.5: Results of i-vector /PLDA SR systems based on MFCC and PLLR
features, and the fusion of them, on the NIST 2012 SRE core conditions 2 and 5.

Condition System EER MinDCF ActDCF

MFCC 1.77 0.272 0.290

PLLR+∆ 3.12 0.419 0.440(2)
Telephone with
No Added Noise

Fusion 1.39 0.215 0.246

MFCC 1.93 0.260 0.294

PLLR+∆ 3.72 0.449 0.481(5)
Telephone

Recorded in Noise
Fusion 1.64 0.219 0.283
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6.6 Chapter Summary

In this chapter, the utility of PLLR features for SR tasks has been studied. As

experiments for NIST 2010 and 2012 evaluation datasets have exhibited, the perfor-

mance attained by systems based on PLLRs is far from the performance attained

by similar systems based on other more common spectral features (such as MFCCs

or PLP).

However, PLLR features do provide a way of extracting further information for SR

tasks. The complementarity of PLLR features with regard to other spectral ap-

proaches has been empirically shown when fusing PLLR and MFCC based systems.





Chapter 7

Conclusions and future work

7.1 Conclusions

The research carried out to fulfill this thesis has followed a natural structure, as the

conclusions attained after each study set the course of the following experimenta-

tion. The manuscript has been organized following that time-line structure, and the

conclusions of each experimental chapter have been the unifying thread with the

next one. The main conclusions of the work have been therefore introduced along

the development of this manuscript.

The Phone Log-Likelihood Ratios have been formally defined. The former exper-

imentation using the features integrated in a spoken language recognition i-vector

system proved that the features provide an effective way to incorporate acoustic-

phonetic information into frame-level features. PLLRs are easy to compute and to

integrate in state-of-the-art language recognition systems, which makes them useful

in different contexts and applications.

The effectiveness of these features was first tested in four different benchmarks, in

which the systems making use of the features have consistently yielded competitive

performances, outperforming, in most cases, those of the baseline acoustic (MFCC-

SDC i-vector) and phonotactic (phone lattice-SVM) systems.

Pairwise fusions of the PLLR-based system with the baseline approaches showed

that PLLRs provide complementary information to both, acoustic and phonotactic

approaches. Furthermore, the fusion of the three systems still provides gains with

107
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regard to the fusion of the baseline approaches, proving the complementarity of

PLLR features with state-of-the-art features.

Next studies focused on reducing the dimensionality of feature vectors, so that com-

mon techniques applied on top of features like SDC could be also tested on PLLRs.

Dimensionality reduction by means of supervised techniques, making use of informa-

tion related to the phonetic categories in IPA charts, provided a way of decreasing

the feature vector size into almost a third of the original size, with just a small system

performance degradation. Among unsupervised techniques, PCA was successfully

applied, showing that the set of features could be reduced to almost a third of their

original size, not only without information loss, but actually enhancing system’s

performance.

The application of shifted delta transformation on top of the reduced set of PLLRs

proved to be a convenient method to increase the potential of the features, and con-

firmed that (as previously found for MFCCs) using a larger spectro-temporal context

expands the information conveyed the information carried out by the features.

The discovery that a reduced feature set, obtained by means of PCA, was more in-

formative than the original led us to the analysis of the feature space. The research

carried out revealed that the features were bounded by an hyper-surface, which was

asymptotically tangential to the axes of the reference system. This would presum-

ably limit the movement of the PLLR features with regard to the axes, limiting the

information they provide. A projection method was developed to get rid of this

effect, which projected the features to the top of the bounding surface, removing the

asymptotic behavior. The system based on the projected set of features revealed

that the method was a suitable transformation to be applied on the PLLRs. The

combination of this technique with PCA further increased the effectiveness of the

system.

Features were then tested on the noisy database RATS, using i-vector modeling

approaches and logistic regression and neural networks as classifiers. This new series

of experiments provided a new set of conditions to test the features, as the benchmark

includes short time and noisy signals. Systems based on PLLR features attained high

performance in all conditions.

Finally, the projected features were also tested in combination with the shifted delta

transformation. This system, which combined the most significant improvements

found in the presented studies, was tested on a NIST LRE benchmark and achieved

the best result among all the experimentation carried out.

Research was extended to speaker recognition. The optimization of the PLLR ex-

traction for a state-of-the-art i-vector PLDA approach revealed that similar configu-

rations are optimal for both, SLR and SR systems, with an important difference: the
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projection method does no improve the performance of the PLLR-based systems in

SR tasks. Experimentation with the i-vector PLDA systems showed that the PLLR

features are not as informative as the ones used in state-of-the-art systems, such as

MFCCs. Nevertheless, when fusing PLLR-based and MFCC-based systems, there is

still a gain in performance, revealing a complementarity between both approaches

that could be useful to improve the overall system robustness.

7.2 Future Work

Extensive studies have been presented exploring the usefulness of PLLR features in

different SLR benchmarks. Yet, the versatility of these features could be further

analyzed, testing their merits in other systems and scenarios, which suggests several

possible future research lines to give continuity to this project.

The approach has been widely tested under i-vector and Gaussian modeling tech-

niques. Some systems have used PLLR-based i-vectors under LR or NN modeling.

The PLLR features could still be tested under other modeling techniques, with the

aim of finding the most advantageous modeling for PLLR based systems.

Most of the research conducted in this work has experimented on relatively long

signals (30s). Results attained in RATS benchmarks for shorter signals (10s and 3s)

suggest that PLLRs are suitable for recognition on short duration signals. This fact

should be further checked in other benchmarks, like NIST LRE datasets.

Research could also focus on extracting PLLRs from other phone decoders, based

on the phonetic inventory of other languages, or even trying to combine the outputs

of different phone decoders.

Regarding speaker recognition, the fact that projected PLLR features do not enhance

system performance opens an experimentation track. Studies should focus on trying

to understand why the speaker-related information contained in the direction used

for the projection cannot be properly modeled, or even whether (and why) speaker

information is being lost after projecting PLLRs.

It would be interesting analyzing also the merits of PLLR features in Text Depen-

dent Speaker Recognition (TDSR) tasks. The nature of this task, performing SR

in utterances with fixed phonetic content, could be an optimal scenario to further

understand the behavior of PLLR features for SR. Analysis of the performance of

PLLR-based systems in TDSR tasks could help optimizing the speaker dependent

information of the features, e.g. by discarding phonetic (utterance-dependent) con-

tent.
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Besides the above mentioned research lines, Deep Neural Networks seem to be the

way to go in SR and SLR fields. Latest works using DNNs have attained outstanding

results in both tasks, outperforming other state-of-the-art techniques. In particular,

given the success of PLLRs, which are typically extracted from the output layer

of a neural network trained on phonetic classes (or states), a promising line of re-

search involves extracting and using bottleneck features, or other kind of DNN-based

features, at the frame level, just in the same way as it was done with PLLRs.



Appendix A

Datasets

This Appendix gives details about the database configuration used for the experi-

ments presented in the manuscript, covering NIST 2007, 2009 and 2011 LRE, Al-

bayzin 2010 LRE and NIST 2010 and 2012 SRE. In the case of RATS dataset,

given that experiments were performed in collaboration with other sites, database

partition details are referenced.

A.1 NIST 2007 LRE

The NIST 2007 LRE [96] defined a spoken language recognition task for conversa-

tional speech across telephone channels, involving 14 target languages.

Training and development data used in this thesis were limited to those distributed

by NIST to all 2007 LRE participants: (1) the Call-Friend Corpus1; (2) the OHSU

Corpus provided by NIST for the 2005 LRE2; and (3) the development corpus pro-

vided by NIST for the 2007 LRE3. A set of 23 languages/dialects was defined for

training, including target and non-target4 languages. For development purposes, 10

conversations per language were randomly selected, and the remaining conversations

(amounting to around 968 hours) were used for training. Development conversations

were further divided into 30-second speech segments. The total number of 30-second

segments was 3073 (see Table A.1 for more details). Results reported in this thesis

1See http://www.ldc.upenn.edu/.
2OHSU Corpora, http://www.ohsu.edu/.
3See http://www.itl.nist.gov/iad/mig/tests/lre/2007/.
4French was the only non-target language used for NIST 2007 LRE.
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have been computed on the subset of 30-second speech segments of the test set for

the closed-set condition (2158 segments), which was the primary task in the NIST

2007 LRE.

Table A.1: 2007 NIST LRE core condition: training data (hours), development
and evaluation data (# 30s segments), disaggregated for target and non-target

languages.

Hours # 30s cuts

Language Train Devel Eval

Arabic 52.59 179 80
Bengali 5.0 76 80
Chinese 166.12 567 398
English 143.7 288 240
Farsi 46.22 225 80
German 57.03 173 80
Industani 64.35 243 240
Japanese 79.11 141 80
Korean 72.86 150 80
Russian 5.0 66 160
Spanish 117.35 531 240
Tamil 58.18 165 160
Thai 5.0 64 80
Vietnamese 46.7 205 160
Non-Target 48.74 - -

TOTAL 967.95 3073 2158

A.2 NIST 2009 LRE

The NIST 2009 LRE featured 23 target languages [93], involving 11 target languages

for which Conversational Telephone Speech (CTS) was available in the NIST 2007

LRE dataset, plus 12 target languages not seen in previous NIST LRE for which

Broadcast Narrow-Band Speech was provided. Most of the speech provided for the

latter consisted of telephone calls included in Voice of America (VOA) broadcasts.

For the 12 new target languages, NIST distributed between 141 and 199 30-second

audited VOA segments per language. Additional non-audited materials were pro-

vided for the 23 target languages and for several non-target languages (see Table

A.2).

Training and development data used in this thesis were limited to those distributed

by NIST to all 2009 LRE participants. A set of 64 languages/dialects was defined
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Table A.2: 2009 NIST LRE core condition: training data (hours), development
and evaluation data (# 30s segments), disaggregated for target and non-target

languages.

Hours # 30s cuts

Train Devel Eval

2007 (CTS)

Language
2007

(CTS)
2009

(VOA) devel eval
2009

(VOA)
2009

Amharic - 58.31 - - 262 398
Bosnian - 5.63 - - 259 355
Cantonese 5.0 2.45 83 80 104 378
Creole - 7.21 - - 256 323
Croatian - 6.45 - - 190 376
Dari - 69.05 - - 276 389
EngAmerican 130.7 9.01 204 80 230 896
EngIndian 13.0 - 84 160 - 574
Farsi/Persian 46.22 25.16 225 80 294 390
French 48.74 67.91 222 80 293 395
Georgian - 4.32 - - 166 399
Hausa - 48.31 - - 274 389
Hindi 59.35 10.06 174 160 178 667
Korean 72.86 5.70 150 80 250 463
Mandarin 151.1 32.4 331 158 230 1015
Pashto - 184.3 - - 281 395
Portuguese - 25.74 - - 240 397
Russian 5.0 147.76 66 160 299 511
Spanish 117.35 45.44 531 240 242 385
Turkish - 6.67 - - 289 394
Ukrainian - 5.59 - - 281 388
Urdu 5.0 36.60 69 80 299 379
Vietnamese 46.7 9.5 205 160 240 315
Non-Target 266.92 408.82 - - - -

TOTAL 967.95 1222.39 2344 1518 5433 10571

for training models. Each of them was mapped either to a target language or to non-

target languages5. For example, Mainland and Taiwan Chinese from NIST 2007 LRE

and Mandarin Chinese from VOA were all mapped to Mandarin Chinese, whereas

Arabic was mapped to non-target languages. Persian and Farsi were mapped to the

same language, as was properly pointed out in [77].

For languages appearing in VOA recordings, the longest speech segments out of each

file were posted to the training dataset, using no more than 2 segments per file, and

a minimum of 225 segments per language. The number of segments extracted per

file was relaxed (augmented) for those languages with few files in VOA.

The whole training dataset (CTS from NIST 2007 LRE and VOA broadcast speech

from NIST 2009 LRE) amounted to 2190 hours. For development, some materials

taken from the development and evaluation datasets of the NIST 2007 LRE were

5The set of non-target languages defined for the NIST 2009 LRE included: Arabic, Bengali, Ger-
man, Japanese, Tamil and Thai from CTS recordings, and Albanian, Azerbaijani, Bangla, Burmese,
Greek, Indonesian, Khmer, Kinyarwanda/Kirundi, Kurdish, Macedonian, Ndebele, Oromo, Ser-
bian, Shona, Somali, Swahili, Tibetan, Tigrigna, and Uzbek from VOA broadcasts.
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Table A.3: NIST 2011 LRE core condition: training data (hours) disaggregated
for target and non-target languages.

Hours

Train

Language
2007

(CTS)
2009

(VOA)
2011

(30s audit)
Other

sources

Arabic Iraqi - - 0.48 20.34
Arabic Levantine - - 0.47 27.56
Arabic Maghrebi - - 0.41 1.79
Arabic MSA - - 0.47 1.87
Bengali 5.0 54.40 - -
Czech - - 0.41 4.19
Dari - 69.05 - -
English American 130.7 9.01 - -
English Indian 13.0 - - -
Farsi/Persian 46.22 25.16 - -
Hindi 59.35 10.06 - -
Lao - - 0.50 2.22
Mandarin 151.1 32.40 - -
Panjabi - - 0.50 -
Pashto - 184.38 - -
Polish - - 0.51 1.79
Russian 5.0 147.76 - -
Slovak - - 0.41 1.69
Spanish 117.3 45.44 - -
Tamil 58.18 - - -
Thai 5.0 - - -
Turkish - 6.67 - -
Ukrainian - 5.59 - -
Urdu 5.0 36.60 - -
Non-Target 257.76 406.93 - -

TOTAL 853.61 1033.45 4.16 61.45

used (see Table A.1). For languages appearing in VOA, besides the audited segments

provided by NIST, additional randomly extracted speech segments, each around 30

seconds long (specifically, between 25 and 35 seconds long), were used. The whole

development dataset consisted of 9295 segments. Results reported in this thesis were

computed on the NIST 2009 LRE evaluation corpus, specifically on the 30-second,

closed-set condition (primary evaluation task).

A.3 NIST 2011 LRE

In the NIST 2011 LRE, 24 target languages were considered (see Tables A.3, A.4).

Among them, 9 languages had never been used before in NIST LRE. Development

data specifically collected for these 9 languages were sent to participants, including

100 30-second segments per language. For a better coverage, these subsets were

randomly split into two disjoint subsets (each having approximately half the seg-

ments for each language/dialect): the first half was used to train specific models for
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Table A.4: NIST 2011 LRE core condition: development and evaluation data
(30s segments), disaggregated for target and non-target languages.

# 30s cuts

Devel Eval

2007 2009

Language (CTS) (eval) (VOA) (eval)
2011

(audit)
2011

Arabic Iraqi - - - - 48 308
Arabic Levantine - - - - 49 308
Arabic Maghrebi - - - - 54 305
Arabic MSA - - - - 51 306
Bengali 76 80 296 43 - 412
Czech - - - - 56 261
Dari - - 276 389 - 267
English American 204 80 230 896 - 221
English Indian 84 160 - 574 - 387
Farsi/Persian 225 80 294 390 - 404
Hindi 174 160 178 667 - 213
Lao - - - - 41 62
Mandarin 331 158 230 1015 - 360
Panjabi - 32 - 9 45 299
Pashto - - 281 395 - 383
Polish - - - - 46 267
Russian 66 160 299 511 - 441
Slovak - - - - 56 280
Spanish 531 240 242 385 - 419
Tamil 165 160 - - - 414
Thai 64 80 - 188 - 375
Turkish - - 289 394 - 276
Ukrainian - - 281 388 - 170
Urdu 69 80 299 379 - 478
Non-Target - - - - - -

TOTAL 1989 1470 3135 6623 446 7616

the new languages, and the second half was used to estimate backend and fusion

parameters [111].

To train more robust models for the target languages, additional data was in-

cluded from databases distributed by the Linguistic Data Consortium (LDC), some

of them containing conversational telephone speech (LDC2006S45 for Arabic Iraqi,

LDC2006S29 for Arabic Levantine) and others containing broadcast speech

(LDC2000S89 and LDC2009S02 for Czech). For these latter, only automatically

detected telephone-speech segments were used.

The remaining materials were extracted from wide-band broadcast news recordings,

dowsampling them to 8 kHz and applying the Filtering and Noise Adding Tool6

(FANT) to simulate a telephone channel. The COST278 Broadcast News database

[151] was used to get speech segments for Czech and Slovak. Arabic MSA was

extracted from Al Jazeera broadcasts included in the KALAKA-2 database created

for the Albayzin 2010 LRE [128]. Finally, broadcasts were also captured from video

6Available online: http://dnt.kr.hsnr.de
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archives in TV websites to get speech segments in Arabic Maghrebi (Arrabia TV,

http://www.arrabia.ma) and Polish (Telewizja Polska, TVP INFO, http://tvp.info).

TV broadcasts were fully audited, so that only reasonably clean speech segments

were selected for training. It was not feasible to collect additional training materials

for Panjabi by any means. Therefore, a single model (trained on just 55 segments)

was used for this language.

A set of 66 languages/dialects was defined for training. Each of them was mapped ei-

ther to a target language or to non-target languages7. The training dataset included

the data mentioned above (one-half of the audited segments plus other sources) plus

2007 CTS and 2009 VOA signals (see Tables A.1 and A.2). The whole training

dataset for the NIST 2011 LRE benchmark amounted to 1953 hours.

For development purposes, the second half of the audited segments provided for new

target languages, along with the NIST 2007 and 2009 evaluation datasets, and 30-

second signals used for development in 2007 and 2009 (see Tables A.1 and A.2) were

used. The whole development dataset consisted of 13663 segments. Results reported

in this paper were computed on the NIST 2011 LRE evaluation corpus, specifically

on the 30-second, closed-set condition (primary evaluation task) (see Table A.4 for

more details).

A.4 Albayzin 2010 LRE (KALAKA-2)

The Albayzin 2010 LRE dataset (KALAKA-2) included wide-band 16 kHz TV

broadcast speech signals for six target languages (see Table A.5). The Albayzin

2010 LRE [128] featured two main evaluation tasks, on clean and noisy speech, re-

spectively. In this thesis, acoustic processing involved downsampling signals to 8

kHz, since all the systems were designed to deal with narrow-band signals.

The training, development and evaluation datasets used for this benchmark matched

exactly those defined for the Albayzin 2010 LRE. For the primary clean-speech

language recognition task, more than 10 hours of clean speech per target language

were used for training. For the noisy-speech language recognition task, besides the

clean speech subset, more than 2 hours of noisy/overlapped speech segments were

used for each target language. The distribution of training data, which amounts

to around 82 hours, is shown in Table A.5. Only 30-second segments were used

for development purposes. The development dataset used in this thesis consisted

7The set of non-target languages defined for the NIST 2011 LRE included: French, German,
Japanese, Korean and Vietnamese from CTS recordings, and Albanian, Amharic, Creole, French,
Georgian, Greek, Hausa, Indonesian, Kinyarwanda/Kirundi, Korean, Ndebele, Oromo, Shona, So-
mali, Swahili, Tibetan and Tigrigna from VOA broadcasts.
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of 1192 segments, amounting to more than 10 hours of speech. Results reported

in this thesis were computed on the 30-second, closed set condition (for both clean

speech and noisy speech conditions) of the Albayzin 2010 LRE evaluation corpus.

The distribution of segments in the development and evaluation datasets is shown

in Table A.5. For further details, see [129].

Table A.5: Albayzin 2010 LRE: Distribution of training data (hours) and
development and evaluation data (30s segments).

Clean Speech Noisy Speech

Hours # 30s cuts Hours # 30s cuts

Language Train Devel Eval Train Devel Eval

Basque 10.73 146 130 2.25 29 74
Catalan 11.45 120 149 2.18 47 55
English 12.18 133 135 2.53 60 69
Galician 10.74 137 121 2.23 60 83
Portuguese 11.08 164 146 3.28 77 58
Spanish 10.41 136 125 3.70 83 79

TOTAL 66.59 836 806 16.17 356 418

A.5 NIST 2010 SRE

Table A.6 shows the speaker distribution across different NIST SRE datasets. The

elements in the diagonal show the number of speakers per dataset and the ones

outside the diagonal represent the number of speakers shared by the corresponding

pair of datasets.

Table A.6: Number of speakers uniquely included in each dataset (diagonal)
and shared with other datasets (outside the diagonal).

SRE04 SRE05 SRE06 SRE08 FU08
SRE04 310 0 0 0 0
SRE05 0 525 348 0 0
SRE06 0 348 949 112 0
SRE08 0 0 112 1336 150
FU08 0 0 0 150 150

These datasets were used to support the development of different parts of the system.

The partition was performed as follows:

• NIST 2004, 2005 and 2006 SRE: These datasets were used to obtain the train-

ing signals for the Universal Background Model, Channel Compensation, Impostor,

ZNorm and TNorm sets. Table A.7 displays the number of signals assigned to each

set.
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Table A.7: NIST 2004, 2005 and 2006 SRE signal distribution.

Women Men Total
UBM 2804 2119 4923
CHC 4586 3531 8117
IMP 2780 2094 4874

TNorm 1479 960 2439
ZNorm 1403 1146 2549

• NIST 2008 SRE: Datasets for this series of experiments were defined so that they

included disjoint sets of speakers, thus, all the signals of NIST 2008 SRE belonging

to the 112 speakers present in previous databases were discarded. The rest of the

signals were divided into two groups: dev1 and dev2. Table A.8 shows the number

of signals in each of these subsets.

Table A.8: NIST 2008 SRE signal distribution.

SRE08 reduced dev1 dev2
training 3149 1621 1528

test 6211 3306 2905

• NIST 2008 Follow Up: Some of the signals present in this dataset were recorded

with the same microphone types used for NIST 2004-2008 datasets, whereas others

were recorded using new microphone types. To take advantage of this particularity,

that could provide robustness against channel variabilities, signals were divided into

three subsets: Channel compensation, ZNorm and TNorm. Table A.9 shows the

number of signals included in each subset.

Table A.9: NIST 2008 Follow Up signal distribution.

Speakers Signals
Women Men Women Men All

CHC 38 38 2432 1776 4208
TNorm 18 18 1145 848 1993
ZNorm 19 19 1212 875 2087

The dataset used for UBM training is a subset of NIST 2004, 2005 and 2006 SREs

consisting of 4882 speech files, as defined in [108]. The approaches presented in

[46, 106, 108] used another subset of signals from the same datasets, that amounted

to 8117 speech files, for channel compensation.

For the systems using i-vector-PLDA approaches, the Total Variability matrices

were trained on the channel compensation subset (including 8117 signals) defined

previously. The PLDA models were trained on a subset of the NIST 2004, 2005,
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2006 and 2008 SRE datasets plus NIST 2008 Follow-up signals, created with the

signals from the IMP, TNorm, ZNorm and NIST 2008 SRE reduced corpora, which

amounted to 23302 speech files.

A.6 NIST 2012 SRE

The dataset used for UBM training is the same defined for the NIST 2010 SRE

benchmark: a subset of SRE04, SRE05 and SRE06 consisting of 4882 speech files.

For the NIST 2012 SRE experiments, the Total Variability matrices and the PLDA

models shared a common training set, including speakers from the NIST 2006,

2008 and 2010 SRE datasets and avoiding repeated speech. This file list was the

single file per ldcid map provided by NIST. Besides those segments, 590 channel-

balanced randomly chosen signals from the NIST 2008 Follow-Up set were used and

the 100 single utterance per speaker signals provided for the NIST 2012 SRE. The

whole training set amounted to 21176 speech files, as described in [49].

Table A.10: NIST 2012 SRE iVector and PLDA training signal distribution.

Speakers Signals
Women Men Women Men All

NIST 2006 SRE 72 38 754 434 1188
NIST 2008 SRE 799 461 7693 4419 12112
NIST 2010 SRE 260 240 3746 3240 7186

NIST 2008 Follow Up 86 63 339 251 590
NIST 2012 SRE Single spk 60 40 60 40 100

A.7 RATS

Experiments on RATS dataset [117], were performed using the data configuration

and partitions as defined in [99, 116].





Appendix B

Participation in International

Challenges

The work carried out comprised also building several systems which were part of the

submissions of the research group (GTTS, http://gtts.ehu.es) to several international

evaluations. This Appendix provides details about the participation in some of them:

a short description of the evaluation, specifications of the submitted systems, the

development stages in which the author contributed and the attained results.

NIST evaluation rules prevent participants from commenting on the rank their sys-

tems have attained or sharing results from other participants. Therefore, for those

challenges, this section will only provide system development and official results

for our site, and comments will only be made comparing the different approaches

presented by our group.

B.1 NIST SRE 2010

Evaluation:

The NIST 2010 SRE followed the spirit of previous evaluations (see 6.1.1 for details).

The evaluation focused on both, telephone and microphone speech, recorded over

different types of channels. Further details can be found in [4, 94].

121
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System:

The EHU1 system was built by discriminatively fusing four subsystems: a GMM-

SVM sub-system, a Linearized Eigenchannel GMM (LE-GMM) subsystem, a GLDS-

SVM subsystem and a JFA subsystem.

The Qualcomm-ICSI-OGI (QIO) noise reduction technique (based on Wiener filter-

ing) was independently applied to the audio streams. The full audio stream was

taken as input to estimate noise characteristics.

Features were obtained with the Sautrela toolkit2 [105]. Mel-Frequency Cepstral

Coefficients (MFCC) were used as acoustic features, computed as described in Sec-

tion 6.3. Two gender dependent UBMs consisting of 1024 mixture components were

trained with the Sautrela toolkit.

• GMM-SVM & LE-GMM subsystems: The GMM-SVM and LE-GMM (also

known as dot-scoring) subsystems were built following the SUNSDV system

description for NIST 2008 SRE [145]. Channel compensation was trained for

inter-telephone, inter-microphone and telephone-microphone variations, using

20, 20 and 40 eigenchannels, respectively. For the GMM-SVM subsystem, a

linear kernel was trained using SMVTorch [36].

• GLDS-SVM subsystem: Sufficient statistics space compensation was projected

to feature space by applying the following expression:

f̂t = ft −
∑
k

γk(t)

nk
Σ

1
2

k c
S
k (B.1)

where ft is the feature vector at time t, γk(t) is the posterior of Gaussian k

at time t, nk =
∑
t γk(t) is the zero-order statistic of Gaussian k, ΣΣΣk is the

diagonal covariance matrix of Gaussian k and cSk is the first-order statistics

shift (sufficient statistics space compensation factor) of Gaussian k given the

input segment S. A polynomial expansion of degree 3 and a Generalized Linear

Discriminant Sequence Kernel [28] were then applied.

• JFA subsystem: The Joint Factor Analysis Matlab Demo from BUT [1, 83]

was applied to the MFCC + ∆ + ∆∆ features, using 200 eigenvoices and 100

eigenchannels.

Trials were conditioned on three channel types: no microphone sessions (0MIC), one

microphone session (1MIC) and two microphone sessions (2MIC). Gender dependent

1In NIST evaluation submissions EHU is used as acronym for our systems
2http://gtts.ehu.es/TWiki/bin/view/Sautrela



Appendix B. International Challenges 123

and channel type condition dependent ZT normalization was performed on trial

scores.

Side-info-conditional fusion and calibration was performed with FoCal [62], using

channel type and gender conditioning. Fused scores were calibrated to be interpreted

as detection log-likelihood-ratios, and a Bayes threshold of 6.907 was applied to make

the hard decisions.

Contribution:

• Development of both GMM-SVM subsystems.

• Sufficient statistic compensation.

• Development of JFA subsystem.

Results:

GMM-SVM and dot-scoring approaches stood out as the best performing individual

systems, followed by the GLDS-SVM and JFA systems. The fusion of the systems

attained the best results, not being yet significantly better than the best individual

systems.

Figure B.1 shows the DET curve of the fused system for the main evaluation con-

ditions. As shown in the Figure, there was a noticeable calibration error in the

condition tests involving microphone signals (conditions 1, 2 and 4). On the other

hand, systems were well calibrated for test conditions related to telephone speech.
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Figure B.1: DET curves of the EHU fused system for the NIST 2010 SRE core
test conditions.
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B.2 NIST LRE 2011

Evaluation: In the challenge organized in 2011, the main task differed from previous

NIST LRE evaluations, as it focused on language pair recognition. The evaluation

comprised 24 target languages, 9 of which had never been used before. For more

details, see the evaluation plan [8] and the paper reporting the evaluation analysis

[69].

System: 5 subsystems were trained for the evaluation, which were then fused using

four different configurations, to build one primary and three contrastive systems.

The five mentioned subsystems were designed as follows:

• Three high-level (phonotactic) phone-lattice SVM subsystems, based on the

BUT decoders for Czech, Hungarian and Russian.

The three subsystems followed the same configuration. First, energy based

VAD was applied to remove non-speech segments. BUT TRAPS/NN CZ, HU

and RU phone decoders were used to perform phone tokenization. The three

non-phonetic units (int, short, pau) were integrated into a single non-phonetic

unit. Phone state posteriors and phone-lattices were computed by means of

HTK3 [156]. The lattice-tool from SRILM4 [144] was used to estimate phone

n-grams. LIBLINEAR5 [59] was used to train SVM classifiers, where SVM

vectors consisted of expected counts of n-grams extracted from the lattices,

weighted by their background probabilities.

• Two low-level (acoustic) subsystems: a Linearized Eigenchannel GMM sub-

system based on channel compensated statistics and Generative i-vector sub-

system computed from channel compensated statistics.

Both subsystems relied on MFCC-SDC features, computed under a 7-2-3-7

configuration. A gender independent 1024-mixture GMM-UBM was trained

by EM-ML using binary mixture splitting, orphan mixture discarding and vari-

ance flooring. For each input utterance, UBM-MAP adaptation was applied

and zero and first order statistics were computed and used as features.

– Dot-Scoring (LE-GMM) system: Channel compensation was performed

as outlined in Eigenchannel Compensation in Section 2.4. The scoring

was computed in the following way:

score(S, l) = log
P (S|λl)
P (S|λubm)

= m̂t
l · x̂S (B.2)

3http://htk.eng.cam.ac.uk/docs/docs.shtml
4http://www.speech.sri.com/projects/srilm/
5http://www.csie.ntu.edu.tw/∼cjlin/liblinear
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where λl and λubm are the target language model and the UBM model,

respectively, x̂S are the channel compensated first order statistics of the

target signal S, and m̂l are the centered and normalized channel compen-

sated MAP-means of language l, computed according to Equation 2.23:

m̂l = (τI + diag(nl))
−1x̂l (B.3)

where τ = 16 is the relevance factor, nl are the zero order statistics of

language l, and x̂l are the channel compensated first order statistics of

the language model.

– i-vector system: An i-vector approach, as defined in Total Variability Fac-

tor Analysis in Section 2.4, was used, in which 500 dimensional i-vectors

were computed from channel compensated sufficient statistics using only

training data from target languages. A generative Gaussian approach was

used for scoring (each language being modeled by a single Gaussian).

Subsystems were combined in four different ways, depending on the normalization

applied, and the data used for training the backend and fusion parameters. Details

of these four configurations are summarized in Table B.1:

Table B.1: Backend and fusion configuration for the EHU systems submitted
to the NIST 2011 LRE.

Backend and Fusion Training dataset
System zt-norm

30s 10s 3s

Pri No dev30 dev10 dev03

Con1 No dev30 dev10+dev30 dev03+dev10+dev30

Con2 Yes dev30 dev10 dev03

Con3 Yes dev30 dev10+dev30 dev03+dev10+dev30

Contribution:

• Development of both acoustic subsystems.

• System calibration and fusion tunning.

Results:

Table B.2 shows the performance of all individual systems submitted on the 30s

test set. All phonotactic and acoustic individual systems performed similarly. The
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fusion of three phonotactic systems outperformed the fusion of the acoustic ap-

proaches. The fusion of all 5 systems attained still a significant gain, achieving the

best performance overall.

Table B.2: Performance (in terms of Cavg) of the phonotactic and acoustic
subsystems and partial and complete fusions on the NIST 2011 LRE 30s test set.

C24
avg Cavg

min act min act

Phone-CZ 12.15 14.02 2.97 3.76

Phone-HU 11.96 14.28 2.71 3.62

Phone-RU 11.38 13.76 2.57 3.46

Phonotactic 7.73 10.13 1.47 2.28

Dot-Scoring 11.62 14.18 2.19 3.17

i-vector 11.58 14.15 2.60 3.50

Acoustic 11.18 13.30 2.00 2.85

All 6.15 8.95 0.93 1.69

Table B.3 shows the results of the fused system in all test sets (30s, 10s and 3s) as

well as the results for the contrastive systems. No significant differences can be found

between their performances except on the 3s condition, where contrastive system 3

yielded slightly better figures. Further details can be found in [113] and [114].



128 Appendix B. International Challenges

Table B.3: Official NIST 2011 LRE results for the EHU systems.

30s min C24
avg act C24

avg min Cavg act Cavg

Pri 6.15 8.95 0.93 1.69

Con1 6.15 8.95 0.94 1.69

Con2 6.08 9.09 0.91 1.75

Con3 6.07 9.07 0.91 1.75

10s min C24
avg act C24

avg min Cavg act Cavg

Pri 12.99 14.77 3.37 4.08

Con1 12.44 14.55 3.23 4.03

Con2 12.72 14.68 3.31 4.12

Con3 12.36 14.36 3.14 3.95

3s min C24
avg act C24

avg min Cavg act Cavg

Pri 25.54 27.25 11.60 12.88

Con1 23.97 25.34 11.07 12.05

Con2 25.52 27.05 11.62 12.86

Con3 23.31 25.28 10.87 12.06
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B.3 NIST SRE 2012

Evaluation:

NIST 2012 SRE focused, as previous evaluations, on speaker detection tasks, but

included new conditions and challenges making the evaluation different from previous

ones.

NIST 2012 SRE included noisy speech in some test segments, making the detection

task more demanding. The evaluation task also included tracks with distinctions

regarding known/unknown trials. Besides, or the first time in NIST SRE, the use

of information from other target trials was allowed to compute the trial score. For

more details on the evaluation, see [5, 70].

System:

The primary system submitted by EHU consisted of the fusion of two subsystems.

Both subsystems were based on an i-vector PLDA approach (see Total Variability

Factor Analysis in Section 2.4 and Section 6.1.3 for details), using MFCC and PLLR

features, respectively.

MFCC features were computed following the procedure described in 6.3 resulting in

a 39-dimensional feature vector. PLLRs were computed using the BUT TRAPs/NN

phone decoder for Hungarian, as shown in Section 3.3, producing a 59-dimensional

feature vector at each frame t. Voice activity detection was performed by removing

the feature vectors whose highest PLLR value corresponded to the integrated non-

phonetic unit.

Training and evaluation sets were defined as described in A.6. The Qualcomm-ICSI-

OGI (QIO)[10] noise reduction technique was independently applied to the audio

streams. The full audio stream was taken as input to estimate noise characteristics.

Two gender dependent UBMs, each consisting of 1024 mixture components, were

estimated on the same dataset used for the EHU NIST 2010 SRE submission (see

A.6), using the Sautrela toolkit. Two gender dependent Total Variability matrices

were estimated on the whole training set, by means of Sautrela. The i-vector dimen-

sionality was set to 500. Gaussian PLDA was also estimated on the whole training

set [18].

PLDA system scores s(T , S) were used as log-likelihoods, so that the likelihood of a

test utterance S given a speaker i was computed as the average likelihood of S over
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all the training signals T of that speaker, as follows:

p(S|i) =
1

|Train(i)|
∑

T ∈Train(i)

es(T ,S) (B.4)

Finally, speaker log-likelihood ratios were computed from speaker log-likelihoods

using flat priors.

Calibration and fusion were estimated and applied by means of the Bosaris toolkit

[19], using the whole training set to estimate calibration/fusion parameters.

Contribution:

• Development of both subsystems.

• System calibration and fusion tunning.

Results:

Results on the SRE 2012 dataset are shown in Table B.4. Note that no special

treatment for noisy conditions was performed to obtain these results. Once again,

the result attained by the acoustic system is better that the one obtained with the

PLLR-based approach in all conditions. However, the fusion of both approaches

attains up to a 38% relative improvement in terms of MinDCF and up to a 29%

relative improvement in terms of ActDCF with regard to the acoustic approach,

which reveals a complementarity between the features.
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Table B.4: Results of EHU i-vector-PLDA systems based on MFCC and PLLR
features, and the fusion of them, on the NIST 2012 SRE core conditions.

Condition System EER MinDCF ActDCF

MFCC 9.00 0.514 0.716

PLLR + ∆ 13.85 0.620 0.751
Interview with

No Added Noise
Fusion 9.38 0.486 0.548

MFCC 1.83 0.277 0.296

PLLR + ∆ 3.12 0.419 0.440
Telephone with
No Added Noise

Fusion 1.39 0.213 0.239

MFCC 9.98 0.533 1.024

PLLR + ∆ 14.98 0.615 0.842
Interview with
Added Noise

Fusion 10.57 0.514 0.726

MFCC 7.05 0.510 0.519

PLLR + ∆ 7.73 0.611 0.619
Telephone with

Added Noise
Fusion 5.60 0.430 0.465

MFCC 2.11 0.312 0.404

PLLR + ∆ 3.72 0.449 0.481
Telephone

Recorded in Noise
Fusion 1.69 0.198 0.562
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B.4 MOBIO 2013

Evaluation:

MOBIO (MObile BIOmetry) is a face and speaker database containing speech ut-

terances (and videos) of 52 female and 100 male speakers. All the data in this

benchmark was collected using mobile devices [101]. The audio signals comprise

both planned and spontaneous speech.

The MOBIO 2013 evaluation proposed a speaker recognition task in a highly de-

manding benchmark, with signals extracted from telephone conversations obtained

with mobile devices, that contained audio segments of short durations and speech

in noisy conditions.

System:

The EHU system was based on a i-vector-PLDA approach (see Total Variability

Factor Analysis in Section 2.4 and Section 6.1.3 for details). The feature extraction

and the VAD were done using the Sautrela toolkit [105]. PLDA [100] was applied

directly on the extracted 500 dimensional i-vector space. A gender independent

1024 component UBM, an i-vector extractor, and gender dependent PLDA systems

were trained on the background set of the MOBIO database. The development

dataset was used only to estimate the calibration parameters. Also, a collaboration

was made with Laboratorio de sistemas de Ĺıngua Falada (L2F), fusing the systems

submitted by both groups to the MOBIO evaluation.

Contribution:

• System development.

• System Calibration and fusion tunning.

Results:

Table B.5 shows the EER of the systems submitted by EHU and L2F, as well as

the best performing primary systems submitted to the competition (considering the

evaluation set). All EHU systems performed significantly better on the male test

set than on the female test set. The performance of the L2F-EHU fused system

was comparable to that of the most competitive systems. The fusion of all the

systems (11 in total) attained a significant gain with regard to any of the individual

approaches. Figure B.2 shows the DET curves for all the submitted systems on the

female and male test sets.
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Table B.5: Official MOBIO 2013 results for several primary systems.

System Female EER Male EER

Alpineon 10.678 7.076

GIAPSI 12.813 8.865

Mines-Telecom 11.633 9.109

EHU 19.511 10.058

L2F 22.140 11.129

L2F-EHU 17.266 8.191

Fusion
(11 systems)

6.986 4.767
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Figure B.2: DET curves of the primary systems submitted to MOBIO 2013
(images taken from [84])
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[18] N. Brümmer, S. Cumani, O.Glembek, M. Karafiát, P. Matejka, J. Pesán, O. Pl-

chot, M. Soufifar, E. de Villiers, and J. Cernocký. Description and analysis
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get, and J. Černocký. Full-covariance UBM and heavy-tailed PLDA in i-vector

speaker verification. In Proc. ICASSP, 2011.

[101] C. McCool, S. Marcel, A. Hadid, M. Pietikainen, P. Matejka, J. Cernocky,

N. Poh, J. Kittler, A. Larcher, C. Levy, D. Matrouf, J.-F. Bonastre, P. Tre-

sadern, and T. Cootes. Bi-modal person recognition on a mobile phone: using

mobile phone data. In IEEE ICME Workshop on Hot Topics in Mobile Mul-

timedia, July 2012.

[102] H. Melin. Databases For Speaker Recognition: Activities In COST250 Working

Group 2. In in Proceedings COST250 Workshop on Speaker Recognition in

Telephony, 1999.

[103] R. W. M. Ng, T. Lee, C.-C. Leung, B. Ma, and H. Li. Spoken Language

Recognition With Prosodic Features. IEEE Transactions on Audio, Speech &

Language Processing, 21(9):1841–1853, Sept 2013.

[104] J. Pelecanos and S. Sridharan. Feature Warping for Robust Speaker Verifica-

tion. In 2001: A Speaker Odyssey - The Speaker Recognition Workshop, pages

213–218, 2001.

[105] M. Penagarikano and G. Bordel. Sautrela: a highly modular open source

speech recognition framework. In Automatic Speech Recognition and Under-

standing, 2005 IEEE Workshop on, pages 386–391, 2005. http://gtts.ehu.

es/TWiki/bin/view/Sautrela.

[106] M. Penagarikano, A. Varona, M. Diez, L. J. Rodriguez Fuentes, and G. Bor-

del. A speaker recognition system based on sufficient-statistics-space channel-

compensation and dot-scoring. In VI Jornadas en Tecnoloǵıas del Habla and II
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[117] O. Plchot, M. Karafiát, N. Brümmer, O. Glembek, P. Matejka, and E. de Vil-
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