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ABSTRACT

This paper presents an alternative feature set to the tradi-
tional MFCC-SDC used in acoustic approaches to Spoken
Language Recognition: the log-likelihood ratios of phone
posterior probabilities, hereafter Phone Log-Likelihood Ra-
tios (PLLR), produced by a phone recognizer. In this work, an
iVector system trained on this set of features (plus dynamic
coefficients) is evaluated and compared to (1) an acoustic
iVector system (trained on the MFCC-SDC feature set) and
(2) a phonotactic (Phone-lattice-SVM) system, using two dif-
ferent benchmarks: the NIST 2007 and 2009 LRE datasets.
iVector systems trained on PLLR features proved to be com-
petitive, reaching or even outperforming the MFCC-SDC-
based iVector and the phonotactic systems. The fusion of the
proposed approach with the acoustic and phonotactic systems
provided even more significant improvements, outperforming
state-of-the-art systems on both benchmarks.

Index Terms— Spoken Language Recognition, Phone
Posterior Probabilities, Log-Likelihood Ratios, iVectors

1. INTRODUCTION

Spoken Language Recognition (SLR) tasks are commonly
carried out using two main complementary approaches, based
on low-level acoustic and high-level phonotactic features, re-
spectively [1].

High-level phonotactic approaches use counts of phone
n-grams to build a feature vector which feeds a classifier,
typically Support Vector Machines (SVM) [2]. In low-level
acoustic systems, the target language is modeled with infor-
mation taken from the spectral characteristics of the audio
signal. Among acoustic systems, Joint Factor Analysis (JFA)
[3], which had been previously used in speaker recognition,
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was successfully applied to spoken language recognition in
[4]. Recently, an approach derived from JFA, known as Total
Variability Factor Analysis or, more briefly, iVector approach
has been successfully applied to Language Recognition [5, 6].

Initially, the iVector technology was applied to language
recognition using the concatenation of Mel-Frequency Cep-
stral Coefficients (MFCC) and Shifted Delta Cepstrum (SDC)
features as input. Lately, other sets of features have been
tested, as in [7], where prosodic features (pitch, energy and
duration) were introduced, or in [8], where features of a Sub-
space Gaussian Mixture Model were used.

In this work, we propose a simple yet effective idea:
using log-likelihood ratios of phone posterior probabilities
produced by a phone decoder as features for an iVector sys-
tem. The study of the effectiveness of these features has been
carried out using two different benchmarks: the NIST 2007
and 2009 LRE narrow-band, conversational telephone speech
databases [9] [10]. The system has been compared to and
then fused with two state-of-the-art approaches: an iVector
acoustic system and a phonotactic system.

The rest of the paper is organized as follows. Section 2
describes the proposed approach including details about the
computation of the phone log-likelihood ratios used as fea-
tures and the flavor of iVectors applied in this work. Section
3 describes the experimental setup and Section 4, the datasets
used in the experiments. Section 5 presents results and com-
pares the performance of the proposed approach to that of
state-of-the-art approaches. Finally, conclusions are given in
Section 6.

2. PHONE LOG-LIKELIHOOD RATIOS AS
FEATURES FOR AN IVECTOR APPROACH

Given a phone decoder with a set of N phone units, each of
them represented typically by means of a model of S states,
the acoustic posterior probability of each state s (1 ≤ s ≤
S) of each phone model i (1 ≤ i ≤ N) at each frame t,
pi,s(t), is directly provided by the phone decoder. Then, the
acoustic posterior probability of a phone unit i at each frame
t, is computed by adding the posteriors of its states:
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pi(t) =
∑
∀s

pi,s(t) (1)

These pi(t) are taken as likelihoods and log-likelihood ra-
tios are computed assigning 0.5 prior to the target phoneme
(the remaining 0.5 being distributed evenly among the j 6= i
phonemes). Therefore, the log-likelihood ratios at each frame
t are computed as follows:

LLRi(t) = log
p(xt|i)

1
(N−1)

∑
∀j 6=i p(xt|j)

i = 1, ..., N

(2)
The resulting N log-likelihood ratios per frame are the

new Phone Log-Likelihood Ratio (PLLR) features. In our
approach, an iVector system is trained on these features.

The total variability space (iVector) approach [11] has
become state-of-the-art in speaker and language verification.
Under the iVector modeling assumption, an utterance GMM
supervector (stacking GMM mean vectors) is defined as:

M = m+ Tw (3)

whereM is the utterance dependent GMM mean supervector,
m is the utterance independent mean supervector, T is the to-
tal variability matrix (a low-rank rectangular matrix) and w is
the so called iVector (a normally distributed low-dimensional
latent vector). That is, M is assumed to be normally dis-
tributed with mean m and covariance TT t. The latent vector
w can be estimated from its posterior distribution conditioned
to the Baum-Welch statistics extracted from the utterance and
using the Universal Background Model (UBM). The iVector
approach maps high-dimensional input data (a GMM super-
vector) to a low-dimensional feature vector (an iVector), hy-
pothetically retaining most of the relevant information.

3. SYSTEM CONFIGURATION

In this work, two state-of-the-art SLR baseline systems
are considered: (1) an acoustic iVector approach trained
on MFCC-SDC features, which shares the modeling part
with the PLLR-based system; and (2) a Phone-Lattice-SVM
phonotactic approach based on expected counts of n-grams,
computed from the same posterior probabilities used to com-
pute PLLR features. In this section we address the configura-
tion of the PLLR iVector system, along with the two baseline
systems, the backend and fusion modules applied on the re-
sulting scores and the evaluation measures that will be used
in this work.

3.1. PLLR iVector system
As a first step to get the PLLR features, the open software
Temporal Patterns Neural Network (TRAPs/NN) phone de-
coders, developed by the Brno University of Technology
(BUT) for Czech (CZ), Hungarian (HU) and Russian (RU)

[12] were applied. The BUT decoders feature 45, 61 and
52 phonetic units for Czech, Hungarian and Russian, respec-
tively. For each unit, a three-state model was used, so three
posterior probabilities per frame were calculated.

The BUT decoders produce a sequence of numbers repre-
senting the posterior probabilities pi,s(t) for each one of the
three states s of each phone model i at each frame t, encoded
in the following way:

xi,s(t) =
√
−2 log pi,s(t) (4)

Thus, the posterior probability pi,s(t) can be obtained as fol-
lows:

pi,s(t) = e−
(xi,s(t))2

2 (5)

Before computing log-likelihood ratios, the non-phonetic
units int (intermittent noise), pau (short pause) and spk (non-
speech speaker noise) were integrated into a single non-
phonetic unit model. Then, a single posterior probability was
computed for each phone i (1 ≤ i ≤ N), by adding the poste-
rior probabilities of all the states in the corresponding model
(Equation 1). Finally the log-likelihood ratio for each phone
was computed according to Equation 2, getting 43 (CZ), 59
(HU) and 50 (RU) log-likelihood ratios which we call PLLR
features.

Voice activity detection was performed by removing the
feature vectors whose highest PLLR value corresponded to
the non-phonetic unit.

For the iVector system, a gender independent 1024-
mixture UBM was estimated by the Maximum Likelihood
criterion on the training dataset, using binary mixture split-
ting, orphan mixture discarding and variance flooring. The
total variability matrix T was estimated as in [11], but using
only data from target languages, according to [6].

A generative modeling approach was applied in the iVec-
tor feature space [6], the distribution of iVectors of each lan-
guage being modeled by a single Gaussian set. Thus, the
iVector scores were computed as follows:

score(f, l) = N(wf ;µl,Σ) (6)

where wf is the iVector for target signal f , µl is the mean
iVector for language l and Σ is a common (shared by all lan-
guages) within-class covariance matrix.

3.2. MFCC-SDC iVector system
In this case, the concatenation of MFCC and SDC coefficients
under a 7-2-3-7 configuration was used as acoustic represen-
tation. Voice activity detection, GMM estimation and the total
variability matrix training and scoring were performed as in
the PLLR iVector approach.
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3.3. Phonotactic systems
The three phonotactic systems presented in this work have
been developed under the phone-lattice-SVM approach [2].
As in [13], given an input signal, an energy-based voice ac-
tivity detector was applied in first place, which split and re-
moved long-duration non-speech segments. Then, the BUT
TRAPs/NN phone decoders for CZ, HU and RU [12] were
applied.

BUT decoders were configured to produce phone posteri-
ors (see Equation 4) that were converted to phone lattices by
means of HTK [14] along with the BUT recipe [12]. Then,
expected counts of phone n-grams were computed using the
lattice-tool of SRILM [15]. Finally, a SVM classifier was
applied, SVM vectors consisting of expected frequencies of
phone n-grams (up to n = 3), weighted as in [16]. A sparse
representation was used, which involved only the most fre-
quent features according to a greedy feature selection algo-
rithm [13]. L2-regularized L1-loss support vector regression
was applied, by means of LIBLINEAR [17].

3.4. Backend/Fusion parameters
The backend serves as a precalibration stage that transforms
the space of scores to get a reliable computation of the true
class probabilities. Besides, when the set of languages for
which models have been trained does not match the set of
target languages, the backend maps the available scores to the
space of target languages (the trained languages being used as
anchor models) [18]. In the case of NIST LRE datasets, dif-
ferent models can be trained for dialects of a target language
or for different sources (e.g. telephone conversational speech
vs. radio broadcast speech), and non-target languages can be
modeled as well.

Based on preliminary experiments on the development set
of each database, a zt-norm and a discriminative Gaussian
backend were applied to scores. The FoCal toolkit was used
to estimate and apply the calibration/fusion models [19] [20].

3.5. Evaluation measures
In this work, systems will be compared in terms of: (1) the
average cost performance Cavg as defined by NIST, and (2)
the so called CLLR [19], an alternative performance measure
used in NIST evaluations.

4. DATASETS

4.1. NIST 2007 LRE

The NIST 2007 LRE [9] defined a spoken language recogni-
tion task for conversational speech across telephone channels,
involving 14 target languages (see Table 1). Some languages
featured various dialects or accents. French was the only non-
target language.

Training and development data used in this work were
limited to those distributed by NIST to all 2007 LRE partic-

ipants: (1) the Call-Friend Corpus1; (2) the OHSU Corpus
provided by NIST for the 2005 LRE2; and (3) the develop-
ment corpus provided by NIST for the 2007 LRE3. A set of 23
languages/dialects was defined for training. For development
purposes, 10 conversations per language were randomly se-
lected, and the remaining conversations (amounting to around
968 hours) were used for training. Development conversa-
tions were further divided into 30-second speech segments
(see Table 1 for more details). Results reported in this paper
have been computed on the subset of 30-second speech seg-
ments of the test set for the closed-set condition (2158 seg-
ments), which was the primary task in the NIST 2007 LRE.

Table 1. 2007 NIST LRE core condition: training data
(hours), development and evaluation data (number of 30s
speech segments), disaggregated for target and non-target lan-
guages.

Hours # 30s segments
Language Train Devel Eval
Arabic 52.59 179 80
Bengali 5.0 76 80
Chinese 166.12 567 398
English 143.7 288 240
Farsi 46.22 225 80
German 57.03 173 80
Industani 64.35 243 240
Japanese 79.11 141 80
Korean 72.86 150 80
Russian 5.0 66 160
Spanish 117.35 531 240
Tamil 58.18 165 160
Thai 5.0 64 80
Vietnamese 46.7 205 160
Non-Target 48.74 - -

TOTAL 967.95 3073 2158

4.2. NIST 2009 LRE

The NIST 2009 LRE featured 23 target languages [10], in-
volving 12 target languages for which Conversational Tele-
phone Speech (CTS) was available in the NIST 2007 LRE
dataset, plus 11 new target languages (see Table 2 for more
details). For this evaluation, Broadcast Narrow-Band Speech
was provided consisting mostly of telephone calls included in
Voice of America (VOA) broadcasts.

Training and development data used in this work were
limited to those distributed by NIST to all 2009 LRE partici-
pants. A set of 64 languages/dialects was defined for training
models. Each of them was mapped either to a target language
of the NIST 2009 LRE or to the set of non-target languages
(including 26 languages/dialects).

For languages appearing in VOA recordings, the longest
speech segment out of each file was added to the train dataset.

1See http://www.ldc.upenn.edu/.
2OHSU Corpora, http://www.ohsu.edu/.
3See http://www.itl.nist.gov/iad/mig/tests/lre/2007/.
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Table 2. 2009 NIST LRE core condition: training data
(hours), development and evaluation data (number of 30s
speech segments), disaggregated for target and non-target lan-
guages.

Hours # 30s cuts
Train Devel Eval

2007 (CTS)
Language

2007
(CTS)

2009
(VOA) devel eval

2009
(VOA) 2009

Amharic - 58.31 - - 262 398
Bosnian - 5.63 - - 259 355
Cantonese 5.0 2.45 83 80 104 378
Creole - 7.21 - - 256 323
Croatian - 6.45 - - 190 376
Dari - 69.05 - - 276 389
EngAmerican 130.7 9.01 204 80 230 896
EngIndian 13.0 - 84 160 - 574
Farsi/Persian 46.22 25.16 225 80 294 390
French 48.74 67.91 222 80 293 395
Georgian - 4.32 - - 166 399
Hausa - 48.31 - - 274 389
Hindi 59.35 10.06 174 160 178 667
Korean 72.86 5.70 150 80 250 463
Mandarin 151.1 32.4 331 158 230 1015
Pashto - 184.3 - - 281 395
Portuguese - 25.74 - - 240 397
Russian 5.0 147.76 66 160 299 511
Spanish 117.35 45.44 531 240 242 385
Turkish - 6.67 - - 289 394
Ukrainian - 5.59 - - 281 388
Urdu 5.0 36.60 69 80 299 379
Vietnamese 46.7 9.5 205 160 240 315
Non-Target 266.92 408.82 - - - -

TOTAL 967.95 1222.39 2344 1518 5433 10571

For development, some materials taken from the development
and evaluation datasets of the NIST 2007 LRE were used (see
Table 1). For languages appearing in VOA, besides the au-
dited segments provided by NIST, additional randomly ex-
tracted speech segments lasting around 30-seconds (specifi-
cally, between 25 and 35 seconds) were used. Evaluation was
carried out on the NIST 2009 LRE evaluation corpus, specif-
ically on the 30-second, closed-set condition (primary evalu-
ation task) (see Table 2 for more details).

5. RESULTS

To evaluate the performance of the iVector system trained on
PLLR features, a detailed study was carried out for the NIST
2007 LRE dataset. In order to further evaluate the proposal,
a second series of experiments was then carried out on the
NIST 2009 LRE dataset.

5.1. Results on NIST 2007 LRE

To optimize the performance of the iVector system trained
on PLLR features, we first tested on the PLLR features some
state-of-the-art techniques applied to other parameterizations.

5.1.1. Dynamic coefficients

Dynamic coefficients of acoustic representations have proven
to be effective in speech, speaker and language recogni-
tion, so we first evaluated the usefulness of this technique
when applied to PLLRs. Three different parameterizations
based on the PLLR features were tested. The first one com-
prised only PLLR static features. In the second one, the
feature vector was augmented with first-order dynamic co-
efficients (PLLR+∆). In the third one, the feature vector
was augmented with first and second order dynamic coef-
ficients (PLLR+∆+∆∆). Tests were carried out using the
BUT phone decoders. Similar results and conclusions can be
drawn with any of the decoders. Therefore, for the sake of
clarity, only the results for the BUT HU decoder are shown in
Table 3.

Table 3. Cavg × 100 and CLLR performance for iVector sys-
tems using HU PLLR, PLLR+∆ and PLLR+∆+∆∆ features,
on the LRE07 primary evaluation task.

System Cavg × 100 CLLR

PLLR 3.45 0.564
PLLR+∆ 2.66 0.382
PLLR+∆+∆∆ 3.60 0.506

As shown in Table 3, adding first order dynamic coeffi-
cients improved significantly the performance of the system,
whereas second order deltas had the opposite effect, leading
to degraded performance. Therefore, in the following exper-
iments, PLLR+∆ were used as features in the PLLR-iVector
approach.

5.1.2. Parameterization techniques

Degradation of SLR performance is related in most cases to
some kind of language independent variability of audio ut-
terances (typically channel/noise variability). Several tech-
niques can be applied to minimize the effect of such variabil-
ity. Among them, Feature Normalization [21] and Feature
Warping [22] are two of the most effective (the latter, com-
monly used in speaker recognition). However, as shown in
Table 4, no improvement in performance was attained when
applying any of these techniques under the PLLR-iVector ap-
proach.

Table 4. Cavg × 100 and CLLR performance for iVector sys-
tems using HU PLLR+∆ features, with: (a) no noise reduc-
tion technique, (b) Feature Normalization (FN) and (c) Fea-
ture Warping (FW), on the LRE07 primary evaluation task.

System Cavg × 100 CLLR

PLLR+∆ 2.66 0.382
PLLR+∆ +FN 2.95 0.436
PLLR+∆ +FW 3.21 0.435
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5.1.3. Overall results

Results obtained under the PLLR-iVector approach with the
three BUT decoders, using PLLR+∆ features are shown in
Table 5. The performance of state-of-the-art acoustic and
phonotactic systems is also presented and compared to that
of the PLLR-iVector systems, along with all the possible fu-
sions, to study their complementarity.

Table 5. Cavg×100 andCLLR performance for iVector base-
line systems using acoustic features (MFCC-SDC), iVector
systems with PLLR+∆ features, phonotactic baseline systems
and the fusion of them, for each of the BUT decoders, on the
LRE07 primary evaluation task.

System Cavg × 100 CLLR

iVector MFCC-SDC (a) 2.85 0.407

Phonotactic (b1) 2.94 0.440
CZ iVector PLLR+∆ (c1) 4.18 0.550

(a)+(b1) 1.22 0.189
(a)+(c1) 1.95 0.280
(b1)+(c1) 1.79 0.257Fusion

(a)+(b1)+(c1) 1.24 0.176

Phonotactic (b2) 2.08 0.310
HU iVector PLLR+∆ (c2) 2.66 0.382

(a)+(b2) 1.08 0.152
(a)+(c2) 1.40 0.215
(b2)+(c2) 1.20 0.166Fusion

(a)+(b2)+(c2) 0.82 0.124

Phonotactic (b3) 2.69 0.383
RU iVector PLLR+∆ (c3) 4.08 0.549

(a)+(b3) 1.13 0.182
(a)+(c3) 1.72 0.265
(b3)+(c3) 1.76 0.240Fusion

(a)+(b3)+(c3) 1.10 0.163

If we focus on single-systems, the best performance was
yielded by the HU phonotactic system, which attained 2.08
Cavg × 100, followed by the HU PLLR+∆ iVector system,
which outperformed the acoustic iVector based on MFCC-
SDC features. The RU and CZ phonotactic systems per-
formed worse that the HU phonotactic system. The per-
formance of the RU PLLR+∆ and CZ PLLR+∆ systems
degraded in the same proportion as the corresponding RU
and CZ phonotactic systems.

Regarding the fused systems, similar conclusions can be
drawn from any of the CZ/RU/HU sets of results. The fusion
of the acoustic iVector system and the PLLR+∆ iVector sys-
tem yielded very good results. As may be expected, the fusion
of the phonotactic and the acoustic iVector systems provided
very competitive performance, closely followed by the fusion
of the phonotactic and PLLR+∆ systems, which, though shar-
ing a common source (the phone posterior probabilities pro-
vided by BUT decoders), proved to be quite complementary.
Finally, the best performance was always yielded by the fu-
sion of the three systems (remarkably, for HU: 0.82 Cavg ×
100 and 0.124 CLLR), meaning that PLLR features provide
complementary information to both acoustic and phonotactic

approaches.

5.2. Results on NIST 2009 LRE
Based on the performance attained on the NIST 2007 LRE
dataset, for the NIST 2009 LRE dataset results will be only
reported for the HU BUT decoder. Note that better results
could probably be reached for this dataset using a different
decoder, as previous experiments with phonotactic systems
suggest [18].

Table 6 shows the performance of the baseline systems
and the proposed approach on the NIST 2009 LRE primary
evaluation task. First, note that the three systems attained
similar results. Fusion performance was consistent with the
results obtained for the NIST 2007 LRE dataset. The fusion
of the phonotactic and MFCC-SDC iVector systems provided
the best pairwise performance, followed by the fusion of the
PLLR+∆ iVector and phonotactic systems. The fusion of the
PLLR+∆ iVector and MFCC-SDC iVector systems was also
competitive. Once again, the best performance (outperform-
ing other state-of-the-art systems reported in the literature for
the same dataset) was achieved when fusing the three sys-
tems: 1.48 Cavg × 100.

Table 6. Cavg × 100 and CLLR performance for the baseline
phonotactic and iVector systems, the PLLR+∆ iVector sys-
tem and the fusion of them, on the LRE09 primary evaluation
task.

System Cavg × 100 CLLR

iVector MFCC-SDC (a) 2.70 0.535
Phonotactic (b) 2.49 0.502

HU iVector PLLR+∆ (c) 2.42 0.505
(a)+(b) 1.67 0.346
(a)+(c) 1.79 0.392
(b)+(c) 1.69 0.357Fusion

(a)+(b)+(c) 1.48 0.321

6. CONCLUSIONS

In this paper, a new set of features suitable for iVector lan-
guage recognition, the so called Phone Log-Likelihood Ra-
tios (PLLR), has been presented and evaluated. The study
of the features performed on the NIST 2007 LRE database
showed that best results were attained when using the features
and their first order dynamic coefficients. The analysis of the
usefulness of these features has been extended to the NIST
2009 LRE dataset, and compared to state-of-the-art phono-
tactic and acoustic approaches. The PLLR+∆ iVector system
outperformed an MFCC-SDC-based iVector system on both
benchmarks.

The fusion of the acoustic and PLLR-based iVector sys-
tems has proved to be effective, yielding (in terms of Cavg)
between 33% and 50% relative improvement with regard to
the acoustic iVector system. Moreover, though sharing the
source of features (phone posteriors provided by phone de-
coders), the fusion of the PLLR iVector system with a phono-
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tactic system was also fruitful, providing between 32% and
42% relative improvement with regard to the phonotactic sys-
tem. Finally, the fusion of the three approaches yielded the
best results in experiments on both datasets, outperforming
the fusion of two state-of-the-art (phonotactic and MFCC-
SDC iVector) systems. These results suggest that the pro-
posed PLLR iVector approach contributes complementary in-
formation to both acoustic and phonotactic approaches.

Current work involves evaluating the PLLR features on
other benchmarks and exploring the performance that can be
attained under other modeling approaches and/or configura-
tions.
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