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ABSTRACT
Volume modelling and visualization pose important chal-
lenges for scientific data handling. Neutron spectroscopy
is an intensity-limited technique where efficient data cap-
ture is a must. Such requirements are usually met using
wide angular coverage detectors. Such devices may gener-
ate several gigabytes of information produced for an indi-
vidual experiment, which needs to be handled within short
lapses of time.

This paper describes a technique for the construction
of a volume model using information coming from differ-
ent levels of ’binning’ resolutions to be applied to the raw
(as measured) data. The technique which is adaptive in na-
ture provides an efficient representation of the information,
allowing to explore in detail regions of the experimental 4D
space where the sought data is concentrated.

KEY WORDS
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and Visualization, Volume Visualization, Information Vi-
sualization.

1 Introduction

Contrary to the case of other experimental techniques,
where the construction of a volume model is straightfor-
ward (i.e. by simple interpolation), neutron scattering
poses stringent limitations to such an endeavor because of
three main reasons. First, the technique has been since
its beginnings an intensity-limited tool. This results from
the very nature of the process of neutron production (fis-
sion reactors or accelerator-based sources) which severely
limits the achievable fluxes of particles impinging on the
specimen of interest. Second, a neutron spectroscopy
experiment on a crystal tries to explore a 4-dimensional
space constituted by the three cartesian components of the
momentum-transfer vectorQ as well as the scalar energy-
transfer. For most applications, data may be sparse, mostly
being concentrated in come regions of space. Finally, the
achievable statistical accuracy of the collected data may
vary easily from one to another region in the reciprocal
space, because of instrumental limitations.

For reasons just delineated, an accurate representation

of the measured data, including some measure of their re-
liability constitutes the first step in data treatment. To do
so, an accurate volume model needs to be developed from
observations together with available a-priori knowledge on
the specific problem to be addressed (i.e. crystal symmetry
etc.).

Traditionally, scientific visualization processes com-
prise three, well-defined stages, that are:

1. Model building (interpolation, binning, resampling,
subsetting, etc.).

2. Mapping(contouring, isosurface, etc.).

3. Rendering

Here we focus ourselves onto the construction of a
volume model for data sets generated by a neutron chopper
spectrometer. This leading method [1,2], which visualiza-
tion techniques are still in it’s infancy, requires to builda
volume model. Because of the need of detecting and filter-
ing out spurious data, as well as to avoid data correlation, a
new way of building a hierarchical grid is here proposed. It
is important to notice that practically all visualization tools
require some type of volume model for their application,
even in more innovative scenarios asintegrated visualiza-
tion modelproposed by Robertson and de Ferrari [3] or
the Steering Modelproposed by Earnshaw and Jern [4],
the construction of a volume model is required for the effi-
cient analysis, visualization and transmission of the scien-
tific data. Making the proposed model interesting in other
areas where intense limited tools are used.

2 Data Characteristics

An idealized scattering experiment of the kind we are in-
terested in (direct geometry), consists in the selection ofa
neutron beam with well defined energy and propagation di-
rection (or wavelength or neutron velocity), that is made to
exchange energy and momentum with the material of inter-
est. Energy and momentum exchange are then measured in
terms of the change in the velocity of the incident neutrons
as well as in the direction of the outgoing (scattered) beams.
For such a purpose a technique known as time-of-flight is



commonly used, where the change in velocity of the out-
going neutrons is measured by the time taken to reach a
detector positioned at a given distance while the change in
momentum is measured by the use of detectors positioned
at different angles with respect to the incoming beam.

A given detector is thus placed at a given angle with
respect to the incident neutron beam, and located at a dis-
tance L2 from the sample, while this sits at L1 from the
neutron source. A beam of incident neutrons travelling

with wave-vector
⇀

Ki

(

= 2π/λ

)

whereλ stands for their De

Broglie wavelength, will interact with the sample resulting
in scattering at different angles, having final wave-vector
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The change in neutron energy is thus determined by
the corresponding change in the time taken to reach the de-
tectort. As we are dealing with neutrons within the ther-
mal and epithermal ranges (below some 10 ev. or so) non-
relativistic mechanics holds and thus the neutron velocity
is calculated from~v = L/T , whereL = (L1 + L2) is the
total flight-path. The neutron energy is then given by

E =
1

2
mN~v2 (2)

As a result, by measuring the time-of-arrival of neu-
trons to the detectors one derives the final wave vector for
each one of the detected neutrons.

A crystalline solid by virtue of its inherent anisotropy
requires a three-dimensional variable to describe its struc-
ture. The latter is specified in full in terms of a decompo-
sition into crystal planes that are indexed according to well
established procedures (Miller indices). Because of the na-
ture of the experimental technique the position, of a entity
within the crystal is most conveniently described by set-
ting ourselves within the reciprocal (Fourier) space. There,
the crystal planes are specified in terms of threeh, k, l in-
dices and the change in momentum thus involves a three-
dimensional variableQhkl. In other words, the informa-
tion provided by a scattering experiment involves searches
within a four-dimensional space, energy-transfer being the
additional dimension. This sets our basic problem as one
dealing with searches over a four-dimensional space that
contains the relevant information within rather restricted
regions. That is, the scattered intensities correspondingto
static (positional) correlations give rise to strong intensity
’spots’ within Qhkl leaving most of it empty. Conversely,
the signature of atomic or spin motions will be comprised
within narrow regions of[Qhkl,∆E].

For a severely intensity-limited technique exploration
of the adequate portions of[Qhkl,∆E] is thus a must.
Information will come in form of histograms of spec-
trum number and time of flight bin. These quantities are
then converted into momentum-transfer and frequency (or
energy-transfer).

This study is focused onto the most demanding case,
that are single-crystal experiments performed on time-of-
flight neutron spectrometers. Last generation machines em-
ploy Position Sensitive Detectors (PSD) that provide close
to continuous coverage over a large solid angle array in the
forward direction (about 160.000 detector pixels and an ad-
ditional narrower strip of detectors in the horizontal plane).
On such instruments one can control of resolution in both
momentum and energy-transfers by choosing different in-
cident energies and instrument setups. Such a pixellated
detector array gives the experimenter a possibility for high-
speed visualization and data assessment. Development of
analysis software thus plays a vital role in the exploitation
of data. Time-of-flight and pixel position of the scattered
neutrons are stored in an array of 108pixels, from which
the scattering function is constructed, in software, in a vol-
ume of reciprocal space of typically containing 107volume
elements.

The data is then represented as intensity (i.e. neu-
tron counts) measured along some trajectories within wave
vector-energy space. The origin of these trajectories define
a 2D grid and so a set of trajectories defines a data volume.
The data format of interest for physicists corresponds to

projections in wave vector-energy space
(

⇀

Qh,
⇀

Ql,
⇀

Qk, ε
)

.

These projections are calledviewing axes
⇀

U1,
⇀

U2,
⇀

U31,
and for the purpose of plotting they should be chosen to be
orthogonal. Notice that the fourth vector-component, that
is the energy axis is, by definition orthogonal to all wave
vector components.

Our aim here is to provide the necessary technology
to be able to apply the different volume visualization tech-
niques in this scientific area. The nature of the problem,
requires to rebin raw data in a hierarchical grid over rele-
vant viewing axes, retaining high flexibility and preserving
high statistics areas. This will necessarily pass through the
construction of an adaptive volume model that keeps track
of local variations, choosing a large integration step on low
statistics zones, and a small integration step otherwise.

1The experimental technique (direct geometry) requires to fix the value

of
⇀

Ki, this means that it is possible to express the wave vector-energy

space in terms of just 3 vectors, because the

(
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)

compo-

nents are not independent.( In the case of indirect geometrythe fixed pa-

rameter would be
⇀

Kf , not affecting to the projection, from 4D to 3D
space).



3 Related Work

Work previously reported mostly deals with 2D images.
Within those, theAdaptive Intensity Binning of Sanders
and Fabian [5], is perhaps a close precursor of the meth-
ods described below. Such authors consider a bin as a col-
lection of pixels, meaning by a pixel one of the individual
picture elements. The algorithm attempts to adaptively bin
a single image based on the number of photons in each re-
gion. The number of pixels plotted in a graph is always
constant, as also is the number of pixels that form the im-
age. Its main interest is to facilitate human perception, plot-
ting with the same color, pixels, that are contained in the
same bin. This may present problems in cases where, for
example; we have two binsa andb, wherea is made by
just one pixel (good statistics), and the binb, is made by
15 pixels, (bad statistics), depending on the user-selected
color scaling, high statistics areas are practically undistin-
guishable by the user.

Also, a Voronoi Tessellation scheme has been dis-
cussed by Cappellari and Copin [6]. There, Voronoi Tes-
sellation is employed to produce optimal 2D binnings. The
procedure introduces some improvements, and in particular
it satisfies theTopological, MorphologicalandUniformity
Requirementpresented by the authors of the paper.

The algorithm presented in this paper shares a view-
point close to that presented by Sanders and Fabian. Our
choice was determined by factors related to the size of our
input data ( 8 million counts per experiment), as well as the
ease in implementing 3D versions.

4 Multiresolution Algorithm

In contrast to a common binning algorithm, where given
a data space a grid is built just adding to the bin all the
counts or data points enclosed into the boundaries of the
bin b={b1,b2,b3,...,bk}, the presented multirresolution bin-
ning algorithm creates an adaptive volumetric model from
discrete volume data.

By convention we will here consider the termbin or
pixelas a collection ofcountsor data points, where the data
points are simply the raw data we want to analyse. the pixel
term will be used when dealing with images produced by
equal-width orfixedbinning algorithms.

We will construct a grid where the bin size is not
fixed, but rather the boundaries of each bin will be deter-
mined by the statistics of the data points that encloses each
bin. As each data set has its own peculiarities; each in-
strument has a very particular accuracy limitations, each
sample reacts in so many different ways depending on the
incident energy beam, orientation, temperature, pressure; it
is impossible to determine a priori the statistical function
that will define the bin size. This makes almost impossi-
ble to implement a predefined automatic decision about the
general parameters for the representations. Interaction is
the way to determine these parameters letting the user deal
with their values for each particular data set [7–9]. Each
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Figure 1. To illustrate the multiresolution algorithm con-
sider the 2D case, where the number of levels is equal to
3, and the resolution pattern has chosen to be determined
by the Level 2 binning size. Although the principles can be
extended trivially to higher dimensions

scientist knows better than anybody the particular behav-
ior of their sample. In particular, the user establishes the
boundaries of the grid, the maximum binning size, and the
minimum bining size applied to each dimension, as well as
the ratio error/intensity,RATIOthat will act as a threshold,
validating the size of each bin.

In other words, the algorithm will start creating a grid
with a minimum bin size (also determined by the user),
then we will calculate the arithmetic mean of intensity and
the associated error value in each bin as follow:

S =
1

n

n
∑

i=1

S(xi)

ERR =
1

n

√

√

√

√

n
∑

i=1

ERR(xi)
2

Where n stands for the data pointsxi, enclosed to the
boundaries of this bin b={b1,b2,b3,...,bk}. In our case the
limits are taken as inclusive to the left and exclusive to the



right along each axes ’[)’to maintain compatibility with al-
ready existent binning algorithms.

After that, a decision based on the error/signal ratio is
made about accepting the bin as a valid one or not:

SoIF ERR/S≤ RATIO
THEN this bin will be selected, and the data points

that form the bin, will be masked from the original data set,
this action is taken to avoid error correlation dispersion.In
such a way we impose the restriction that each data point
will only contribute to only one bin.

ELSE the bin size will be doubled, collecting only
the remaining data points.

This process will continue up to the maximum bin-
ning size.

And finally, the algorithm will mask the resulting im-
age with a characteristic pattern of the instrument resolu-
tion, to avoid painting areas where there is no real input
data.

So, the method can be seen as four steps. Given a
DataSet of points{x}, these three steps are:

1. Construct the GRID for LEVEL = 1, and insert all data
point x in DataSet into it.

2. For each level;

• Extract the bins which ERR/S ratio is below the
threshold, to the FINAL GRID

• Remove those contributing points from GRID

3. Mask the resulting image with the instrument resolu-
tion pattern.

4.1 Implementation issues

In order to avoid possible problems related with the bound-
aries that arise from the specification of maximum and
minimum binning size, The user is left to specify the grid
boundaries and the maximum binning size, for each dimen-
sion. The same applies to the threshold value (RATIO),
where the way minimum binning size is specified, is by the
number of levels (NLEVEL), the algorithm will go up, dou-
bling the size of the bins. Another issue, is how to deal,
with data points having no signal(S = 0). This means an
instability in our condition and the way we have considered
these points is to be above the threshold.

The relationship between the resolution in each axis is
set from∆Umax = 2NLEV EL−1 ·∆Umin. This means that
the number of levels this algorithm covers in each dimen-
sion, will be the same. This restriction allows us to use con-
secutive convolution products between matrices, improving
the execution time of the algorithm.

One of the main limitations, is what to do with the re-
maining points, that the algorithm has not collected, that is
those which remain below the threshold even if we use the
largest binning size. Different approximations have been

taken such as avoid plotting the remaining points or col-
lecting them within the maximum binning size scheme, and
plotting them using a different transparency level. Our own
experience shows that modification of the transparency at-
tribute changes the perception of the color adopted by the
bin. It thus seems better to show them with the same opac-
ity level in the final image, since the contextual visual in-
formation [7,9,10] is more important than the imprecision
we gain in the last level of integration, giving some level of
uncertainty when the user visualizes the biggest bins.

The final implementation enables the user to fully in-
teract with the algorithm by means of a GUI, enabling to
choose the boundaries, binning maximum and minimum
sizes for each axis, error-intensity threshold and color axis
scaling.

5 Results

5.1 2D Results

The most widely used method of volume visualization,
consists in creating successively 2D plots, through cuts
along the data volume. This provides a compromise be-
tween speed of volume viewing and accuracy of represen-
tation of details. It however presents some deficiencies,
that will be explained from now on. At present, the avail-
able visualization software (namedMslice [11]), requires
to take aslice of data as a function of any two variables
from the four components of momentum and energy trans-

fer
(

⇀

Q, ε
)

.

As a result we obtain 2D color intensity plots see
fig.2(c) and fig.2(a). Where the resolution will be constant
over the entire graph, the user will then decide whether to
take a small, or large integration step, which of course, will
be determined by statistics of the overall experiment, not
adapting to the local peculiarities. It is also possible to use
a gaussian shape filter to smooth the obtained 2D color plot,
helping the user to gain some insight of the predominant
patterns see fig.2(d) and fig.2(b). This represents the tradi-
tional solution adopted to represent ’low statistics’ data, or
to stand out information signal from the background. The
chosen smoothing filter, a gaussian shape kernel, acts as a
low pass filter, providing a gentler smoothing and preserv-
ing edges better than similarly sized common mean filters.
In this particular case, the kernel is a rotationally symmetric
gaussian low-pass filter of size 3x3 pixels, with an standard
deviation of approximately 0.5. The different n-levels of
smoothing are obtained by repeatedly, convolving the same
kernel n-times.

In both previously mentioned figures, a pattern can be
perfectly recognized, nevertheless, using a convolution fil-
ter we are introducing some correlation, as the output will
be a weighted average of each pixel’s neighborhood, with
the average weighted towards the value of the central pix-
els. The weighted average is just only in terms of intensity,
the error tolerance is no considered here, as a result we
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(a) Minimum binning size – ’fixed’ binning algorithm
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(b) Smoothed minimum binning size – ’fixed’ binning algorithm
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(c) Optimal binning size – ’fixed’ binning algorithm
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(d) Optimal binning size – ’fixed’ binning algorithm after using a
gaussian shape smoothing filter
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(e) Input raw data
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(f) ’Multiresolution binning’ Algortihm

Figure 2. Represents different color maps, projected onto the perpendicular axes U3 = [0,0,Ql,0], being U1 = [Qh,0,0,0], and
U2 = [0.5Qh, -Ql, 0,0]. In all the cases the color bar has chosen to go from 0 to 4(abs. units). From (a) to (b) the figures
have been produced using a equal-width binning algorithm, which bin size is [0.0125, 0.0125]. From (c) to (d) bin size is
[0.05, 0.05]. Fig.(e) represents a scatter plot of raw inputdata. Fig.(f) has been produced using the presented algorithm, with a
threshold of 0.35, going from the maximum binning size: [0.2, 0.2] to the minimum binning size: [0.0125, 0.0125].



have that a pixel with a very low accuracy contributes in the
same way it does a very high accuracy pixel, therefore we
lost accuracy in the displayed information, this could mis-
lead the researcher, in terms of confusing measured data
with the obtained patterns.

Notice that especially in the fig.2(b) case, much of the
noise still exists, although it has decreased in magnitude
somewhat. It has been smeared out over a larger spatial
region. Increasing the standard deviation of the gaussian
kernel, continues to reduce/blur the intensity of the noise,
but also attenuates the high frequency details (e.g. edges)
significantly.

Finally consider fig.2(f) which is produced by the
multiresolution algorithm. It not only displays information
about the average intensity in each pixel but also yields the
associated error-bar. The intensity is represented by the
assigned color to the pixel, where the accuracy of such a
measure will be given by the size of the pixel. In addition
it represents the outline of the input data more accurately
than the current implementation of the ’fixed’ binning algo-
rithm, where the boundaries of the detectors, are not han-
dled properly, in particular, we could wrongly infer from
fig.2(d) that there is a high intensity peak centered in the
[U1 = -0.35, U2 = 1, U3 = 3] position, where it is clear, see
fig.2(e), that there is no input data.

We can also integrate along the third axis in some
restricted range, in addition to specifying the integration
ranges in the other two orthogonal directions, the result
being a 1D graph. This 1D graph is what traditionally
gives accurate information, showing the intensity values,
and their correspondent error-bars. Unfortunately, this plot
only shows a very narrow information of the entire experi-
ment, not letting users appreciate the nature of the experi-
ment as a whole.

5.2 3D Results

The present algorithm, was also implemented to construct
a 3D grid, see fig.3. Volume visualization enables to ob-
tain a broader vision of the experiment, allowing to lo-
calize the area of interest, fast and precisely. It may also
make possible to stick out properties of the material under
study, that otherwise, using the traditional system; using
2D slices, wouldn’t be noticed. As a practical example, a
crystal misalignment was discovered in theRb2MnF4 Ex-
periment [12], thanks to the 3D representation.

One of the most popular volume visualization tech-
niques, consist in displaying surfaces of constant intensity,
better known asisosurfaces. Unfortunately, to get the most
of this technique, it is required to have a minimum qual-
ity in the input data in terms of signal error, otherwise the
obtained image is confusing. For very low statistics data,
it has been proven that the best way of visualizing volume
data sets consists in using interactive slices and cuts of the
volume under study.

Once the volume data set has been constructed we
can apply the different volume visualization techniques, we

Figure 3.Slicesmade from a volume data generated from
thecobaltexperiment using the 3D implementation of the
multiresolution algorithm. The used threshold value was
again 0.35, and bin sizes go from maximum bin size of
[0.2, 0.2, 0.4] to minimum binning size of: [0.025, 0.025,
0.05].

consider to extract better information. In this case fig.3
shows constant slices cutting the volume data set to bring
this information.

In the 2D version we always could modify the thick-
ness of the plane, adding more points to the contribution of
each pixel. This will not affect the resolution in the visu-
alization of the plane. Of course, getting more points the
resulted intensity will be smoothed in each pixel. Whereas
in the 3D version; the resolution in one axes and the infor-
mation contained in the rectangular cubic lattice are linked,
which forces us to think in terms of rectangular cubic pix-
els, where the pixel size will need a careful thinking, to
choose the best compromise between the resolution and the
information content. The choosing of a very narrow step in
one axis forces the perpendicular plane’s voxels to contain
fewer points. Here again we rely on visual feedback from
the end users to choose the correct dimensions.

6 Interactivity - CPU Time

Time consumption is a fundamental issue to ensure a visual
feedback. The formulation of queries by direct manipula-
tion and the immediate display of the results has many ad-
vantages for both novices and experts. This enables users
to gain a deeper understanding of the data set, providing
information about the nature of the problem that can not be
grasped with a static representation. [7,13,14]

Some few measurements have been carried out to test
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Figure 4. Required times (in logarithmic scale) to con-
struct the final image, the x axis show the image size, in
the Multiresolutioncase, means the size of the grid con-
structed when LEVEL= 1 (using the minimum bin size),
which has been compared with the time required to con-
struct the same size grid in bothFixedandSmoothed Fixed
cases.

the computational cost of our algorithm. The chosen data
sets for this estimation were:

• Experiment 1: 244Mb of required RAM and a total
of 3.792.208 data inputs to be analysed

• Experiment 2: 515Mb of required RAM and a total
of 8.036.160 data inputs to be analysed

Both data sets were tested on two different machines,

• AMD DURON 1.3GHz Clock Speed, 1,024,000 KB
of RAM

• INTEL XEON 2.4GHz Clock Speed, 2,096,092 KB
of RAM

Fig. 4, compares the required CPU time to build a 2D
grid. It represents three different executions: the traditional
binning algorithm, the same algorithm applying a gaussian
filter after, and the multirresolution algorithm. However,in
practice we work within the first 5 levels, which means a
resolution divergence of24 times, where the proposed ver-
sion keeps a reasonable time dependency behavior, below
9 seconds in the worst scenario.

7 Conclusion

Experiments with different data sets demonstrate clearly
the effectiveness of multiresolution binning Algorithm
when compared with the current ’fixed’ version.

The current visualization technique constructs a lat-
tice where each pixel’s dimension is fixed for the entire
slice or volume. This entails the decision between hav-
ing good resolution (with the shortcoming of getting low
statistics values) or trying to get high statistics, makinga
broader integration, to construct the lattice (and therefore
loosing resolution in high statistics areas of the reciprocal-
energy transfer space).

The main problems that a fixed binning algorithm
presents are, first, outliers may dominate the final presen-
tation, also, skewed data is not well handled, and finally:
correlation exist, when we try to smooth it, even if we use
the most modern adaptive kernel smoothing algorithms.

Both versions, 2D and 3D of the multiresolution algo-
rithm, show information about the intensity and its corre-
spondent error-levels simultaneously without messing up
the resulting image. The size of the pixels is used in a
convenient way to stand out the high-low statistics areas.
Presenting high statistics areas with higher resolution and
poor error-intensity relation zones with lower resolution,
we not onlyfilter the image but also show theaccuracyof
the displayed intensity, in principle we can guarantee that
the showed information has a minimum level of accuracy.

We built a necessary volume model, specifically
thought for the neutron scattering data, which will enable
the application of the different volume visualization tech-
niques, opening a gate to the application of the latest tech-
niques to this scientific visualization field. It is important to



notice that practically all visualization tools require some
type of volume model for their application, and therefore
a correct implementation of a volume modelling will al-
low the implementation of the different visualization tech-
niques that are already available for the rest of the scientific
areas, such as medical image processing, earth sciences and
so on [15,16].

Specifically the generated volume data sets were vi-
sualized in terms of separate slices, not having a true 3D
representation of the data, limiting the possibilities of the
user, the mind can glean information from animation that
is virtually impossible to obtain by separately viewing still
images [17]. The impact of iteration, which is another di-
mension of scientific visualization, allows the researcher,
to cooperate with the computer by directing the computa-
tions, increasing the chances for inspiration, insight, and
understanding.
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