
Citation: Penagarikano, M.;

Varona, A.; Bordel, G.;

Rodriguez-Fuentes, L.J.

Semisupervised Speech Data

Extraction from Basque Parliament

Sessions and Validation on Fully

Bilingual Basque–Spanish ASR. Appl.

Sci. 2023, 13, 8492. https://doi.org/

10.3390/app13148492

Academic Editors: Francesc Alías,

Zoraida Callejas Carrión, António

Joaquim da Silva Teixeira and José

Luis Pérez Córdoba

Received: 22 June 2023

Revised: 15 July 2023

Accepted: 20 July 2023

Published: 23 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Semisupervised Speech Data Extraction from Basque
Parliament Sessions and Validation on Fully Bilingual
Basque–Spanish ASR
Mikel Penagarikano , Amparo Varona , Germán Bordel and Luis Javier Rodriguez-Fuentes *

Department of Electricity and Electronics, Faculty of Science and Technology,
University of the Basque Country (UPV/EHU), Barrio Sarriena, 48940 Leioa, Spain;
mikel.penagarikano@ehu.eus (M.P.); amparo.varona@ehu.eus (A.V.); german.bordel@ehu.eus (G.B.)
* Correspondence: luisjavier.rodriguez@ehu.eus

Abstract: In this paper, a semisupervised speech data extraction method is presented and applied to
create a new dataset designed for the development of fully bilingual Automatic Speech Recognition (ASR)
systems for Basque and Spanish. The dataset is drawn from an extensive collection of Basque Parliament
plenary sessions containing frequent code switchings. Since session minutes are not exact, only the
most reliable speech segments are kept for training. To that end, we use phonetic similarity scores
between nominal and recognized phone sequences. The process starts with baseline acoustic models
trained on generic out-of-domain data, then iteratively updates the models with the extracted data and
applies the updated models to refine the training dataset until the observed improvement between two
iterations becomes small enough. A development dataset, involving five plenary sessions not used for
training, has been manually audited for tuning and evaluation purposes. Cross-validation experiments
(with 20 random partitions) have been carried out on the development dataset, using the baseline and
the iteratively updated models. On average, Word Error Rate (WER) reduces from 16.57% (baseline)
to 4.41% (first iteration) and further to 4.02% (second iteration), which corresponds to relative WER
reductions of 73.4% and 8.8%, respectively. When considering only Basque segments, WER reduces on
average from 16.57% (baseline) to 5.51% (first iteration) and further to 5.13% (second iteration), which
corresponds to relative WER reductions of 66.7% and 6.9%, respectively. As a result of this work, a new
bilingual Basque–Spanish resource has been produced based on Basque Parliament sessions, including
998 h of training data (audio segments + transcriptions), a development set (17 h long) designed for
tuning and evaluation under a cross-validation scheme and a fully bilingual trigram language model.

Keywords: automatic speech recognition; multilingual speech; low-resource languages; code
switching; semisupervised learning; spoken language resources

1. Introduction

In bilingual communities, speakers sometimes mix languages and jump spontaneously
from one language to another, sometimes just for one word or phrase, sometimes for longer,
and go back and forth several times [1]. This phenomenon, known as code switching,
appears even in formal settings such as parliamentary sessions and raises some interesting
problems from the point of view of automatic speech recognition (ASR) systems [2–4]. Com-
monly, each language requires a specific ASR system with its own phonetic, phonological,
lexical and syntactic constraints. This means that language detection and segmentation
(that is, language diarization) must be performed on code-switched speech before applying
an ASR system [5–7]. This language identification and segmentation process adds complex-
ity and computational cost, and may introduce unrecoverable ASR errors when language
detection fails. Current efforts are being devoted to integrate code switching detection and
ASR within end-to-end deep learning approaches [8–10]. In the last years, the interest in
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code switching has increased for certain language pairs, especially Mandarin–English, with
international evaluations being organized [11] and open datasets being released [12].

In this work, we deal with Basque and Spanish (the two official languages in the Basque
Country). Basque is a language of unknown origins, spoken by around 900 thousand
speakers in a small region of Spain and France [13,14]. Basque greatly differs from Spanish,
especially at the lexical and syntactic levels. Only a relatively small number of words
come from the Latin or Romance languages with which Basque has had contact (Spanish,
French and, of course, Latin itself). Spanish (like English) builds its structures using
individual words with different grammatical functions, while Basque uses a set of cases
to mark the grammatical relationships between words in a sentence, each with specific
syntactic functions, and words are built in an agglutinative way by adding suffixes to
lexemes. Spanish uses a verb conjugation system based on person and number, while
Basque includes markers for subject, object and indirect object within the verb itself. In
declarative sentences, the most common order in Spanish is subject-verb-object while in
Basque it is subject-object-verb. However, on a phonetic level, Basque shares many of its
sounds with Spanish (including its five vowels), with only some consonants, such as /ts/,
/ts’/, /s’/ and some other less frequent ones (see Table 1) not appearing in Spanish [15].

In fact, Basque and the variety of Spanish spoken in the Basque Country share a
great deal of features at the acoustic level, which allows us to use a single set of models,
able to process speech in both languages so that a code switched transcription would be
naturally output. Our proposed ASR system includes a single set of acoustic models, a
single vocabulary (including words in both languages, sometimes with the same transcrip-
tions but different pronunciations, sometimes with different transcriptions but the same
pronunciations) and a single (aggregated) language model, which accepts code switchings
at any point.

A positive effect of this integrated approach is that sharing acoustic models can alleviate
the lack of annotated spoken resources for the low-resource language (Basque, in this case),
by taking advantage of the resources available for the other. This will hopefully increase the
robustness of the ASR system for the low-resource language, especially if the sets of acoustic
units of the two languages are relatively close (as in the case of Basque and Spanish). On
the negative side, having a single vocabulary may lead to a higher number of errors, due to
words being recognized in the wrong language (those pronounced in the same way or very
closely in the two languages). Since the language model has been trained on sentences in
both languages, some of them including code switchings, it can naturally accept any sequence
of words in any language (the probability of such a sequence will always be nonzero), and
this allows it to recognize sentences with code switchings—although the model has not been
tuned for this.

Our ASR system is targeted at the plenary sessions of the Basque Parliament (BP),
with the final goal of obtaining high-quality automatic subtitles. BP members speak in both
languages, Basque and Spanish, and code switchings are relatively abundant, so our fully
bilingual approach seems to fit the domain quite well. To achieve the best performance,
using in-domain training data is key, so a critical part of our work involves collecting as
much BP data (audio + minutes) as possible. An important issue with BP minutes is that
they are approximate, not reflecting the audio content of plenary sessions, because false
starts, repetitions, filled pauses, syntactic errors and even some words or expressions which
are judged too colloquial have been filtered out by human auditors. In this way, the BP
minutes would be easily read (being syntactically correct) and fit the intended meaning,
but the correspondence with the audio is partially lost.

This forces us to use the BP minutes with caution by applying a semi-supervised method
to align the minutes with the audio, extract segments and discard those considered not reliable
enough. Note that our method does not match the classical semi-supervised training methods
that have been applied for more than two decades [16–23]: while those methods deal with
completely untranscribed data, we do have some approximate transcriptions.
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Table 1. Reduced set of phonetic units for Spanish and Basque with examples. IPA units are shown
as well as the simplified ASCII encoding used in this work.

ExamplesIPA ASCII
Spanish Basque

i i pico ipar
u u duro umore
e e pero hemen
o o toro hori
a a valle kale
m m madre ama
n n nunca neska
ñ N año arraina
p p padre apeza

bolsa
b b vino begia

t t tomo etorri
d d dedo denda

casa
k k queso ekarri

kilo
g g gata gaia
f f fatal afaria

cero
T z pazo -

s s sala hasi
s’ s - zoroa
S s - kaixo
x j mujer ijito

rosa
r R torre arrunta

R r puro dirua
l l lejos lana
Ù X mucho txikia
ts’ X - atzo
ts X - mahatsa
c X - ttakun
L y caballo pilaka

hielo
J y cónyuge -

j y - joan
Í y - onddo

Classical semi-supervised approaches start from bootstrap acoustic models, typically
trained on a relatively low amount of accurately transcribed non-target speech and used
to build an initial ASR system, which is applied to transcribe a much larger amount of
untranscribed speech, which is the target domain of the ASR system. Typically, the most
confident fragments of the transcribed speech are selected (or other more sophisticated
criteria are applied to select the speech materials) to train a second round of acoustic models
which replace the bootstrap models. The same procedure is then iteratively applied until
some convergence criterion is met.

In this work, we follow a similar approach but instead of a full ASR system, we
apply a phone recognizer and an in-house bilingual grapheme-to-phoneme converter.
Since nominal transcriptions are already available (the parliament minutes), we align the
nominal and the recognized transcriptions at the phone level and select those segments that
best match. In this way, a large fraction of BP sessions can be leveraged for training acoustic
models. Besides increasing the amount of training materials for our ASR system (which is
initially trained on generic speech datasets in Basque and Spanish), adding BP segments to
the training set will help to improve ASR performance specifically on BP sessions (due to
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an implicit adaptation to speakers, acoustic conditions, vocabulary, etc.), which is the main
objective of this work. In [24], the authors also targeted BP plenary sessions, but adopted a
different approach to leverage their speech contents, by creating two separate datasets for
Spanish and Basque, on which two monolingual ASR systems were trained.

As a result of this work, we obtained a speech database specifically targeted at BP
sessions. The database includes a large amount (998 h) of speech data for training acoustic
models, and a development dataset (comprising more than 17 h of speech) used for tuning
and evaluation under a cross-validation scheme. This latter dataset was extracted from
a separate set of more recent BP sessions (not included in training) and then manually
audited (their transcriptions being edited to match the audio contents). Finally, a bilingual
(aggregated) trigram language model, estimated from the original minutes and translations
of BP plenary sessions in Spanish and Basque, is also provided.

This paper is an extension of a previous work [25]. The primary purpose of that work
was to collect speech data for Basque and Spanish (with particular emphasis on the former)
using the Basque Parliament plenary sessions as source. Second, we also aimed to build a fully
bilingual ASR system especially targeted at BP sessions, so that its output could be reliably
used as a starting point to produce the minutes (which still required human supervision). In
this paper, we provide new results and more in-depth analyses. The new contributions of
this work with regard to [25] are summarized as follows: (1) the semi-supervised method
employed to extract, rank and select training segments from BP sessions is now applied
iteratively until the observed improvement is small enough; (2) to increase the statistical
significance of performance results, the small (4 h long) development and test datasets used
in [25] have been replaced by a larger (17 h long) development set which is used under a
cross-validation scheme, with 20 random 50/50 partitions, to perform hyperparameter tuning
and then compute ASR performance; (3) the hyperparameter tuning procedure is described in
detail and (4) the results section is enriched with figures illustrating the convergence of the
training process and the ranking of segment scores.

The rest of the paper is organized as follows. Sections 2 and 3 describe the main
components of our bilingual ASR system and the method used to extract, rank and select
training segments, respectively. Section 4 provides the details of the experimental frame-
work used to evaluate our fully bilingual ASR system on Basque Parliament data, while
Section 5 presents and discusses the results obtained in cross-validation experiments on the
new development dataset specifically created in this work. Finally, a summary of the paper,
conclusions and further work are outlined in Section 6.

2. The Components of a Fully Bilingual ASR System
2.1. Acoustic Units

Spanish and Basque phonetic units are not identical but overlap to a great extent,
especially if we consider the standard Basque spoken in urban environments where Spanish
is dominant. In these urban environments, which gather most of the population in the
Basque Country, speakers tend to soften their Basque pronunciation, mapping Basque
phonemes into something closer to Spanish phonemes. Therefore, the set of acoustic units
considered by our bilingual ASR system is reduced and simplified by loosely taking into
account the frequency of each unit and its most common realizations [26]. For instance, the
three Basque africates (Ù, ts’ and ts) are collapsed into a single africate: the one existing in
Spanish (Ù). Similarly, the Basque fricatives s’ (as in zoroa ) and S (as in kaixo) are collapsed
into the fricative s, existing in both Basque and Spanish. On the other hand, the Spanish
fricative T (as in pazo and cero), which does not strictly exist in Basque, is kept because it is
commonly used for proper names. The reduced set of phonetic units is shown in Table 1,
including the original IPA units, their ASCII counterparts (which account for the units
actually used in this work) and examples in both languages. We ended up with a reduced
set of 23 phonetic units. An additional unit was also defined in our experiments to account
for silences and other background (non-linguistic) events.
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2.2. Lexical Models

An in-house bilingual grapheme-to-phoneme (G2P) converter has been developed and
applied to obtain the phonetic baseforms of words in Basque and Spanish [27,28]. All words
are then gathered in a single lexicon. The G2P converter is based on two pronunciation
dictionaries for Basque and Spanish, each including hundreds of thousands of words,
with verb inflections, declined words, numbers, acronyms, etc. These dictionaries, which
were initialized from Mozilla CommonVoice (cv-corpus-5.1-2020-06-22) [29], Aditu [30]
and Albayzin [31], include nominal pronunciations in terms of the reduced set of acoustic
units, obtained by applying a different set of pronunciation rules for each language [32,33].
Dictionaries grow dynamically as new words are found in Basque Parliament sessions: if a
known word is found, the G2P converter uses the stored pronunciation; but if an unknown
word is found, pronunciation rules are applied to obtain its phonetic baseform, which is
stored in the corresponding dictionary. In the case of unknown words or known words
existing in both dictionaries, we must decide about the language (Basque or Spanish).
This decision is based on the context: the language with more words in a window around
the current word is chosen. In fact, a series of window sizes are considered, starting at 1
(one word at each side of the word under analysis) and increasing to 2, 3, etc., (up to the
length of the sentence), until a reliable decision can be made (note that some words appear
in both dictionaries). This strategy is found to be effective in practice, leading to very
few errors. Numbers and ordinals (such as 25, 13.87, 1., etc.)—which are also transcribed
either in Basque or in Spanish depending on the context—are assigned their most likely
pronunciation, though sometimes it might not match the actual pronunciation. For instance,
the Spanish phrase ‘1.5 millones’ (‘1.5 millions’) is transcribed as ‘uno coma cinco millones’
(‘one point five millions’) while the speaker might have actually said ‘un millón y medio’
(‘one million and a half’). Finally, acronyms are expected to be written in all-caps and
assumed to be spelled, with exceptions being listed in the pronunciation dictionaries. After
processing each Basque Parliament session, the pronunciations of new words added to the
dictionaries are supervised and validated by a human expert.

2.3. Language Model

A mixed (aggregated) language model has been built based on the Basque Parliament
minutes and their translations, including all sessions from 2010 to 2021. In the original BP
minutes, Spanish is dominant over Basque, with a 2:1 ratio, but the professionally produced
translations included in the minutes have exactly the opposite relation, so that the language
model is trained with exactly the same amount of text in both languages. Text normalization
has been applied, which involves deleting punctuation marks, converting numbers and
ordinals into their alphabetical counterparts (using the most likely realization), putting all
words (except for acronyms) in lower case, etc. It must be noted that sentences have been
considered atomic units so that they would always feature a single language, except for
single words or short phrases (that could be expressed even in a third language, like French
or English). In any case, since the language model is estimated from texts in Basque and
Spanish, it naturally allows a mix of both languages, including code switching events not
seen during training, because there is always a small probability that a word in Basque
comes after a word in Spanish (and the other way around). Actually, this feature, along with
the use of a common set of acoustic units, is what makes our ASR system truly bilingual
and robust to code switchings.

3. Iterative Data Collection through Phonetic Decoding and Alignment

For each Basque Parliament plenary session, an audio file and the corresponding
minutes are available. In fact, for ease of processing, each audio file is manually split into
two or three smaller chunks (each about 2 h long) and the minutes are split accordingly. As
a starting point, a phone recognizer, trained on generic datasets for Basque and Spanish (not
including BP materials) is applied to the audio files (without any phonological restrictions),
to obtain a long sequence of phonetic units with their corresponding timestamps. On
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the other hand, the minutes are passed through the above mentioned G2P converter to
acquire a reference (nominal) sequence of phonetic units. Finally, the recognized and
reference sequences of phonetic units are aligned one with another under the criterion of
maximizing the number of matching units (which is approximately the same as minimizing
the number of deletions, insertions and substitutions), following the same text-and-speech
alignment method that has been successfully applied in our group for the alignment of
BP subtitles [28,34,35]. In this way, those regions showing a high density of errors in
the alignment would correspond to parts of the minutes which do not match the audio
contents.

The recognized phonetic sequence sometimes features gaps between two consecutive
units, which represent silent pauses. Gaps longer than 0.5 s are defined as potential breaking
points. Then, a slice is defined as an audio chunk between two consecutive breaking points
and a segment as an audio chunk comprising one or more consecutive slices. This means
that a segment might contain one or more breaking points inside of it. Data collection is
performed by searching for the segment lasting between 3 and 10 s with the highest phone
recognition rate (PRR), defined as:

PRR = 100 · m
m + d + i + s

(1)

where m, d, i and s are the number of matching units, deletions, insertions and substitutions
yielded by the alignment for a given segment, respectively. When two or more segments
attain the same (maximum) PRR, the longest segment is chosen. So PRR and length are the
primary and secondary selection criteria, respectively.

A single-pass search is performed (with linear time complexity) to maximize PRR and
length over those segments meeting the duration constraints in an audio chunk U. Note
that, because of segment duration constraints, for each starting slice, the method has to
consider just a limited number of following slices (usually one or two). Once determined
the optimal segment s∗ in an audio chunk U, the two audio sub-chunks at the left and
right sides of s∗, Ul and Ur, if not empty, are independently searched in two recursive
calls (see Figure 1). Each call returns a list of segments, so we acquire two lists SUl and
SUr , which are merged along with the optimal segment s∗ into a single list SU . In this way,
after searching all the audio files, we end up with a list of segments S that can be filtered
according to PRR.

Figure 1. An audio chunk U with 8 slices: the optimal segment s∗ is chosen (the longest one among
those with the highest PRR); the procedure continues recursively on the left and right chunks, Ul and
Ur, until the number of slices is n ≤ 1.

The recurrence relation defining the time complexity of the search procedure for an
audio chunk U with n slices would be:

T(n) =
{

1 n ≤ 1
n + T(i) + T(j) n > 1

(2)

where i and j (with i + j < n) are the number of slices in the audio chunks Ul and Ur,
respectively. Note that i = 0 implies that Ul would be empty and the recursive call would
not be carried out; on the other hand, if i = 1, Ul would consist of a single slice and
the search would reduce to checking duration constraints. The same stands for j and
Ur. Recurrence (2) resembles that of the well-known quicksort algorithm, which, despite
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being O(n2) in the worst case, has an average cost of O(n log n). Finally, if K audio files
are to be processed, the time complexity of the segment extraction procedure will be in
O(∑K

k=1 nk log nk), nk being the number of slices in the k-th audio file.
Once the list of segments S is obtained for the whole set of BP sessions in the training

set, a new set of acoustic models can be trained by using only those segments for which
the provided transcription best matches the speech contents, either by requiring PRR to
be higher than a given threshold or by using the top ranking segments amounting to a
given number of hours (e.g., 998 h). The resulting models can be then applied again to
perform phone recognition, obtain new alignments and hopefully a better set of segments
for training. Remind that we aim to collect those segments that best match acoustically
the provided transcripts. However, after each iteration the models will better adjust to the
provided (possibly wrong) transcripts, so that after many iterations we may eventually
achieve a PRR of 100% for all segments, with no way to distinguish truly good transcripts
from bad transcripts to which our models have adapted to. This will prevent us from
running too many iterations and will force us to carefully set the threshold that separates
good from bad segments after each iteration. We will come back to this issue in Section 5.

4. Experimental Setup

The acoustic models for the initial (bootstrap) phone recognizer have been trained on
generic speech databases in Basque and Spanish: CommonVoice (cv-corpus-5.1-2020-06-22) [29],
OpenSLR (SLR76) [36], Aditu [30] and Albayzin [31] (see Table 2). The development and test
sets of Aditu and Albayzin were used to validate and evaluate phone recognition performance.
The training, development and test sets have durations of 332.21, 3.96 and 4.03 h, respectively.
Note, however, that Spanish and Basque are highly imbalanced in the training set (with a
3:1 ratio). PRR on the test sets of Aditu (Basque) and Albayzin (Spanish) were of 4.6% and
6.9%, respectively.

Table 2. Databases used to train the baseline (bootstrap) acoustic models. Durations are expressed in
hours.

Name Basque Spanish

CommonVoice 24.75 250.30
Aditu (train) 47.40 -

OpenSLR (SLR76) 5.66 -
Albayzin (train) - 4.10

Total 77.81 254.40

To build the phone recognizer, an off-the-shelf, close to state-of-the-art end-to-end neu-
ral network-based ASR system is used: Facebook AI Research wav2letter++ (consolidated
into Flashlight), applying the Gated ConvNet recipe presented in [37]. Note that the phone
recognizer requires neither lexical models nor a language model. For the semisupervised
data collection step, all the BP plenary sessions from 2014 to 2021 (amounting to more than
1200 h) are used. Despite having access to BP sessions from 2010 to today, the audios prior
to 2014 were recorded and stored using different formats and protocols, which prevented
us from using those audios in this work.

The ASR system is also based on wav2letter++. In this case, besides the acoustic
models, lexical and language models are also estimated, based on the minutes and transla-
tions of all BP plenary sessions from 2010 to 2021, which comprise more than 33 million
words and around 279 thousand different entries. For each word in the vocabulary, a
single pronunciation baseform is considered, as provided by our in-house G2P converter.
A trigram language model is computed using KenLM [38] (without pruning), including
close to 16 million trigrams.
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4.1. Hyperparameter Tuning

Though this work was not oriented towards optimizing the wav2letter++ framework
used to built our ASR systems, we realized that three hyperparameters were critical for
ASR performance: (1) lmweight: the language model weight which is accumulated with the
acoustic model score; (2) silscore: the silence score (penalty) added whenever a silence unit
is appended to the output; and (3) wordscore: the score (penalty) added when appending a
word to the output. To get the most of the wav2letter++ framework, tuning these parameters
really makes a difference. So, a random walk search (see Algorithm 1) is performed to
optimize ASR performance on a tuning dataset, and then the optimal hyperparameters are
applied when processing a test set. Both the tuning and test datasets are independent from
the training set (see Section 4.2 for details).

Algorithm 1 Random walk optimization

1: function RWOPT(D, M, N) . D: tuning data, M: ASR model, N: max iterations
2: l, s, w← 1,−1, 1
3: δ = (δl , δs, δw)← (0.3, 0.3, 0.3)
4: δ(min) =

(
δ
(min)
l , δ

(min)
s , δ

(min)
w

)
← (0.001, 0.001, 0.001)

5: E← ∅ . E: grid points already evaluated
6: min_wer ← comp_wer(D, M, l, s, w)
7: i← 0
8: while i < N and δ 6= δ(min) do
9: C ← {(x, y, z) | x ← l ± δl , y← s± δs, z← w± δw}

10: C ← C− C ∩ E . C: grid points to be evaluated at this iteration
11: if C 6= ∅ then
12: i← i + 1
13: x, y, z← pick_random(C)
14: E← E ∪ {(x, y, z)}
15: wer ← comp_wer(D, M, x, y, z)
16: if wer < min_wer then
17: min_wer ← wer
18: l, s, w← x, y, z
19: end if
20: else
21: δl ← max(δ(min)

l , δl/2)

22: δs ← max(δ(min)
s , δs/2)

23: δw ← max(δ(min)
w , δw/2)

24: end if
25: end while
26: return (l, s, w)
27: end function

The method sketched in Algorithm 1 includes the initial values of the hyperparameters
(l: lmweight, s: silscore and w: wordscore), the initial values of the deltas used to explore
the hyperparameter space and the minimum values of those deltas, which mark an exit
point when attained. All of them were heuristically adjusted in preliminary experiments.
Note that the method also terminates when it reaches a maximum number of iterations N,
which has been set to 500 in this work. Note also that two auxiliary functions are used:
(1) comp_wer, which is assumed to perform ASR on a dataset D using some pretrained
models M and some hyperparameter values, and returns the attained Word Error Rate
(WER); and (2) pick_random, which is assumed to return a random element from a given set.
Finally, note that the method involves some amount of randomness which might produce
convergence issues. To study the impact of randomness, we ran the method a number of
times on different datasets and observed that the hyperparameters obtained on a given set
may actually differ across runs (due to randomness), but the ASR performance attained
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was almost the same in all cases. This means that different hyperparameter values could be
equally good and lead to the same (close to optimal) performance.

4.2. Development Dataset and Cross-Validation Procedure

A development dataset was collected and used to carry out cross-validation experi-
ments, first to tune wav2letter++ hyperparameters (using half of the dataset) and then to
measure WER performance (using the other half), considering 20 random partitions and
reporting the average WER. The development dataset comprises a set of segments extracted
from the five BP sessions held in February, 2022 (thus not overlapping with the training set).
Segments were extracted in the same way as the training segments, meaning that they did
not correspond to complete sentences but to pieces of one or two sentences. These segments
were manually audited (the audio listened to and the transcripts fixed) only at sections
where the recognized sequence of words did not match the text in the minutes. These
sections were located automatically, and involved any number of substitutions, deletions
and/or insertions. The transcript resulting after auditing could be either the recognized
sequence of words, the text provided in the minutes or a different sequence of words not
matching any of them. Finally, each segment was automatically classified as containing
only Spanish, only Basque or being bilingual (probably with a code switching event). This
allowed us to disaggregate ASR performance by language. Details about this dataset are
shown in Table 3.

Table 3. Development dataset used to tune and evaluate ASR systems through cross-validation.

Language # Segments Duration

Spanish 6057 11:18:19
Basque 2955 05:27:03

Bilingual 239 00:29:06

Total 9251 17:14:28

The 9251 segments of this dataset are organized chronologically, in the same order as
they were produced in the original BP sessions. To define each partition, first an index k is
chosen randomly between 0 and 9251, so that the half starting at k (from k to (k + 4625− 1)
mod 9251) is assigned to the tuning set, while the half ending at k− 1 (from (k + 4625)
mod 9251 to (k − 1) mod 9251) is assigned to the test set. This guarantees temporal
coherence within both subsets, which will possibly contain different speakers and different
topics, making the partition more realistic.

For each partition, we compute WER performance on both the tuning and test sets,
obtaining one global and three per-language WER figures, for the Basque, Spanish and
bilingual subsets of segments. In this way, we end up with eight WER results, by computing
averages for the 20 partitions considered in cross-validation experiments. Besides the
averages, standard deviations and 95% confidence intervals for the averages (using normal
distributions) are also computed.

5. Results
5.1. Baseline (Out-of-Domain) Models

The first part of this work involved training baseline accoustic models to build a
bilingual phone recognizer for Basque and Spanish using wav2letter++ and the datasets in
Table 2, as a starting point for the semisupervised data collection procedure. Table 4 shows
the amount of speech that would be collected by applying different PRR thresholds to the
list of segments (by keeping only those segments with PRR > threshold). By inspecting
these numbers, we determined that PRR = 80 was a good compromise between the amount
of speech recovered and the quality of reference transcriptions.

The baseline acoustic models were also used to run word-level recognition experiments
using the wav2letter++ ASR system described in Section 4. Table 5 shows the average
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WER, disaggregated per language, obtained by baseline models on the tuning and test
sets in cross-validation experiments. Though WER figures are slightly better (lower) for
the tuning set (as may be expected, because hyperparameters are optimized on it), the
hyperparameter values seem to be working quite well also for the test set. It is also quite
remarkable that sharing the acoustic models and using a single aggregated language model
seems to work equally fine for Basque and Spanish. Worst per-language results are obtained
on bilingual segments, something that could be expected, due to code switchings. On the
other hand, while results are quite similar for Basque and Spanish, higher variabilities
(standard deviations and 95% confidence intervals) are found for Basque. This might be
due to the particular speakers that are being evaluated. An even larger cross-validation
dataset should be used to avoid these variability issues.

Table 4. Amount of speech (in hours) obtained from the training set by applying the baseline phone
recognizer and keeping segments with PRR ≥ Threshold.

PRR Threshold Time (Hours)

100 186
95 490
90 745
85 902
80 1000
75 1054
70 1084
65 1100
60 1108

Table 5. WER performance of baseline acoustic models in cross-validation experiments.

Set Metric Basque Spanish Bilingual All

Avg 16.63 16.19 22.38 16.44
Tuning StdDev 0.79 0.40 0.48 0.38

95% CI 0.35 0.17 0.21 0.17

Avg 16.57 16.38 22.44 16.57
Test StdDev 0.86 0.45 0.51 0.46

95% CI 0.38 0.20 0.22 0.20

5.2. In-Domain Models (Retrained on Basque Parliament Data)

The next step of the process consisted of using the speech segments of the BP plenary
sessions with PRR ≥ 80, which amount to around 998 h after discarding segments with a
few number of phonetic units, to train a new set of acoustic models. Note that the baseline
acoustic models were trained on around 332 h obtained from different and heterogeneous
sources, which had nothing to do with BP sessions. At this point, however, we were
using three times more training data; moreover, the data were extracted from BP sessions,
under the same acoustic conditions and probably including some of the speakers that
would appear on the datasets used to tune and evaluate the ASR system. Adapting to the
operating conditions was, in fact, one of our main objectives, that is, taking advantage of
the speech available from BP sessions to improve the performance of our ASR system when
dealing with BP speech.

Average WER figures (disaggregated per language) obtained by the retrained models
in cross-validation experiments are presented in Table 6. Large and consistent improve-
ments can be observed with regard to the results shown in Table 5. The global WER goes
from 16.44% to 4.29% on the tuning sets (meaning a 73.9% relative WER reduction) and
from 16.57% to 4.41% on the test sets (meaning a 73.4% relative WER reduction). Again, as
expected, results are slightly better on the tuning set than on the test set. These improve-
ments could be generally due to using a greater amount of training data and these data
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being in-domain, that is, the same speakers and environment/channel conditions appear in
both training and test datasets. On the other hand, WER figures are better for Spanish than
for Basque. This could be explained by different factors: (1) the dominance of Spanish over
Basque (with a 2:1 factor) in the training set; (2) a higher variability of accents/dialects in
Basque (with not only different pronunciations, but also different vocabularies) compared
to Spanish, which features a single accent/dialect in the dataset; and (3) the use of a reduced
set of acoustic units might be hindering the discrimination ability of the acoustic models
only for Basque, because the fused consonants do not exist in Spanish.

Table 6. %WER performance of acoustic models obtained after one iteration of the semisupervised
data collection method in cross-validation experiments.

Set Metric Basque Spanish Bilingual All

Avg 5.43 3.93 4.38 4.29
Tuning StdDev 0.16 0.17 0.55 0.14

95% CI 0.07 0.07 0.24 0.06

Avg 5.51 4.04 4.35 4.41
Test StdDev 0.20 0.17 0.65 0.14

95% CI 0.09 0.07 0.29 0.06

Figure 2 shows a schematic of what we have done so far: using the baseline models and
the models obtained after one iteration of the semisupervised data collection method on the
BP training set to run cross-validation experiments, which involve hyperparameter tuning
and ASR evaluation on independent BP datasets. Next, we proceed with a second iteration
of the process, using the updated models to run the whole data collection pipeline and
obtain a new set of hopefully better aligned segments. While running this second iteration,
we may decide either to keep the same amount of data as in the first iteration (998 h, which
corresponds to using a PRR threshold of 98.28) or instead to apply an alternative threshold
(PRR > 95) to collect 1118 h (see Figure 3). Counterintuitively, the amount of training
data available when the PRR threshold is 0 does not correspond to all the training data,
because the collection procedure described in Section 3 discards segments smaller than 3 s
(orphan segments, usually with a low PRR). Since PRR figures are higher for the acoustic
models trained after realignment (because they have adapted to Basque Parliament data),
the number of discarded low-PRR segments decrease, a sizeable amount of those formerly
low-PRR segments are pasted to the surrounding segments and the amount of training
data available increases.

We have tried the two options, obtaining practically the same performance in both
cases (see Tables 7 and 8). This suggests that those additional 120 h of the second option,
besides having questionable transcripts, do not improve the acoustic models and can thus
be discarded. It seems that the criterion of choosing an equivalent amount of material
(in this case, the top ranking segments amounting to 998 h) is good enough. Figure 4 shows
WER results on the test set vs. WER results on the tuning set for 20 random partitions
defined of the development set. These results reveal that: (1) hyperparameter tuning is
working fine; (2) WER figures are highly and negatively correlated, which makes them
somewhat complementary: all the partitions considered in the experiments comprise the
same set of segments, so the global WER would be the same (around 4%) for all partitions,
but segments would be distributed in different ways in the tuning and test sets, so for any
given partition, WER figures would be higher on the most difficult set and correspondingly
lower on the easiest one; and (3) despite the average WER is statistically identical in both
cases, the models trained on the top ranking 998 h yield slightly better results than the
models trained on the top ranking 1118 h, maybe because those 120 additional hours do
not have reliable transcripts and introduce some noise.
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Figure 2. Experimental framework, showing the semisupervised data collection pipeline and cross-
validation experiments using the baseline acoustic models and the acoustic models obtained after
one iteration of the pipeline. Top ranking segments can be chosen using a PRR threshold or a target
amount of data.

Figure 3. Amount of training data collected (in hours) depending on the PRR threshold, for the base-
line (black) and first-iteration realigned models (blue). The red point signals the PRR threshold (80%)
used to retrain the baseline models (998 h of top ranking segments); the green point signals the PRR
threshold (98.28%) corresponding to using the top ranking 998 h in the second retraining stage; and
the blue point signals an alternative PRR threshold (95%) for the second retraining stage (1118 h of
top ranking segments).



Appl. Sci. 2023, 13, 8492 13 of 17

Table 7. WER performance of the acoustic models obtained after a second iteration of the semisu-
pervised data collection method (using the top ranking 998 h, PRR threshold = 98.28) in cross-
validation experiments.

Set Metric Basque Spanish Bilingual All

Avg 5.09 3.66 3.95 4.02
Tuning StdDev 0.16 0.12 0.36 0.13

95% CI 0.07 0.05 0.16 0.06

Avg 5.13 3.66 3.90 4.02
Test StdDev 0.16 0.12 0.31 0.12

95% CI 0.07 0.05 0.14 0.05

Table 8. WER performance of the acoustic models obtained after a second iteration of the semisuper-
vised data collection method (using the top ranking 1118 h, PRR threshold = 95) in cross-validation
experiments.

Set Metric Basque Spanish Bilingual All

Avg 5.22 3.67 4.11 4.06
Tuning StdDev 0.14 0.13 0.50 0.13

95% CI 0.06 0.06 0.22 0.06

Avg 5.29 3.72 4.34 4.10
Test StdDev 0.13 0.13 0.51 0.12

95% CI 0.06 0.06 0.22 0.05

Figure 4. WER on test vs WER on tuning for 20 random partitions obtained by the second iteration
realigned acoustic models, trained on: (a) the top ranking 998 h of segments (green); and (b) the top
ranking segments with PPR > 95 (blue).

In any case, the performance attained by the second-iteration realigned models is
only sligtly better than that obtained with the first-iteration realigned models. Nothing
compared to the huge improvement observed when going from the baseline to the first-
iteration realigned models. This suggests that further iterations of the data collection
pipeline are likely to yield even smaller improvements. WER results in cross-validation
experiments are summarized in Figure 5.

To support our decision to stop the procedure, Figure 6 shows ASR performance (without
language model) on a 4-h validation dataset extracted from a BP session not included in
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training, for successive training iterations of the the baseline (black), first-iteration realigned
(blue) and second-iteration realigned (green) acoustic models. Apparently, performance
improvements get smaller as the training process progresses, and after the second-iteration
realigned models converge, there seems to be little margin for improvement. Hopefully, at
this point we have already recovered all the good segments (those for which the available
transcript reasonably reflects the acoustic sequence). Furthermore, we discovered by manual
inspection that, after repeatedly training on segments with inaccurate transcripts, our acoustic
models did actually learn to recognize those transcripts, making PRR figures get increasingly
close to 100%, so that those segments would be mistaken as good. In other words, performing
more iterations of the data collection pipeline would make our models overfit and eventually
all the segments in the training set (including both good and bad ones) would be collected.

Figure 5. WER performance in cross-validation experiments on the BP development dataset (tun-
ing/test, 20 partitions) using baseline, first-iteration and second-iteration realigned acoustic models,
disaggregated per language: Spanish (es), Basque (eus), bilingual (bi) and all segments.

Figure 6. WER performance (without language model) obtained during the training process on a 4-h
validation dataset extracted from a BP session not included in the training set, for the baseline (black),
first-iteration realigned (blue) and second-iteration realigned (green) acoustic models.
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6. Conclusions

In this paper, we have presented and evaluated a semi-supervised data collection
pipeline which leverages the audios and minutes of plenary sessions of the Basque Par-
liament to train domain-adapted models. We have also presented the main features of a
fully bilingual ASR system for Basque and Spanish, based on the integration of acoustic,
lexical and language models. Our ASR system is able to deal with code switching events in
a natural and computationally efficient fashion, and yields remarkable ASR performance
in the domain of the Basque Parliament plenary sessions. Global Word Error Rates (WER)
reduce (on average) from 16.57% (baseline) to 4.41% (realigned models, first iteration) and
4.02% (realigned models, second iteration), meaning 73.4% and 8.8% relative WER reduc-
tions, respectively. Focusing on Basque (the low-resource language this work is targeted at),
the average WER goes from 16.57% (baseline) to 5.51% (realigned models, first iteration)
and 5.13% (realigned models, second iteration), meaning 66.7% and 6.9% relative WER
reductions, respectively. Finally, as a byproduct of the process, a new bilingual database for
Basque and Spanish is obtained, consisting of a training set (998 h long), a development
dataset (17 h long) designed for cross-validation experiments and a fully bilingual language
model (adapted to the Basque Parliament domain) featuring close to 16 million trigrams.
Future work involves extending the development dataset for the Basque Parliament domain
and trying to export the data collection pipeline to other domains.
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