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Abstract

Automatic speech recognition (ASR) systems are com-
monly designed to process and transcribe speech signals in a
single language. At most, they can recognize and output a hand-
ful of foreign words. However, speech signals sometimes in-
volve two or more languages mixed continuously, including a
sizeable amount of code-switching events, where speakers natu-
rally switch from one language to another. Though efforts have
been made in recent years to deal with code-switched speech,
there is a lack of benchmarks that allow researchers to evalu-
ate ASR systems on this kind of speech. The Albayzin 2024
Bilingual Basque-Spanish Speech to Text (BBS-S2T) Chal-
lenge aims to provide a benchmark for the Basque-Spanish
pair of languages, including the datasets needed to build and
evaluate bilingual ASR systems. This paper presents the task,
the datasets, the challenge conditions, and a publicly available
baseline system with a Word Error Rate (WER) of around 3%.
Then, the submitted systems are briefly described and their per-
formance is analyzed. The best-performing system achieved a
WER of 1.89% on the evaluation set, which means a relative
reduction in WER of 39% compared to the baseline system.

Index Terms: automatic speech recognition, Basque, Spanish,
code switching

1. Introduction

Automatic speech recognition (ASR) systems are typically de-
signed to process and transcribe speech signals in a single lan-
guage. At most, they may be able to output a reduced number
of foreign words (usually in English) that are employed in the
target language. However, in bilingual countries such as the
Basque Country, people sometimes switch from one language
to the other, a phenomenon known as code switching [1], not
only when talking with friends or relatives, but also in more
formal situations. That is the case of Basque Parliament ple-
nary sessions, where speakers frequently switch from Basque
to Spanish (and vice versa) during their turns. Under these cir-
cumstances, an ASR system must be able to deal with code
switchings and produce bilingual transcripts. This can be done
in several ways, depending on the characteristics of the involved
languages. The most straightforward method is to continuously
detect the spoken language and then apply the corresponding
monolingual ASR system. However, in the last years efforts
have been made to integrate this approach into a single ASR
system, which would be robust to code switchings and able to
transcribe speech in several languages [2, 3,4, 5,6, 7, 8,9, 10].

The Bilingual Basque-Spanish Speech to Text (BBS-S2T)
Challenge has been specifically designed to compare the perfor-
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mance of state-of-the-art ASR technology on the task of tran-
scribing speech in two different languages, including the sim-
ple approach mentioned above but also other more innovative
approaches. The challenge provides training, tuning and eval-
uation datasets with ground-truth transcriptions. The datasets
consist of short (3-10 second long) utterances extracted from
Basque Parliament plenary sessions, which may contain speech
in Basque and/or Spanish.

The challenge is agnostic with regard to the ASR approach
employed by participants, who may develop either an integrated
bilingual ASR system or two monolingual ASR systems work-
ing under the decisions made by a language detection module.
However, teams have been encouraged to develop a single in-
tegrated (bilingual) ASR system. To make the task easier, a
fully bilingual baseline ASR system with an overall Word Error
Rate (WER) of around 3% has been made available to partici-
pants, who could take it as a starting point to further refine the
approach and hopefully improve its performance.

The challenge included two phases: development and eval-
uation. During the development phase, which spanned three
months (June-August 2024), the participants could build and
tune their ASR systems, based on the training and tuning
datasets, which included ground-truth information (utterance
transcriptions, speaker and language tags). The evaluation
phase started on September 10th, 2024, with the release of the
evaluation dataset, which consisted of an independent set of
speech utterances, also extracted from Basque Parliament ple-
nary sessions, but without any ground-truth information. The
deadline for submitting the output of ASR systems was October
18th, 2024. Each output file should consist of a UTF-8 encoded
text file with one line per utterance, containing the utterance
name followed by the recognized transcription. Each partici-
pant had to submit the output of one primary system and may
also submit the outputs of any number of contrastive systems.
Submissions were ranked according to the overall WER perfor-
mance obtained on the evaluation dataset. Finally, on October
25th, 2024, the ground-truth of the evaluation dataset was re-
leased and participants were informed about their systems’ per-
formance. The evaluation plan provides complete information
about the BBS-S2T Challenge [11].

2. The task

The task consisted on automatically transcribing a short input
utterance, which was expected to contain speech in Spanish
and/or Basque. It was strictly forbidden to listen to the audio
contents or to hire crowdsourcing (human supported) transcrip-
tion services. An ASR system, or a set of ASR systems, along
with any number of auxiliary subsystems, should be applied
to automatically get the transcriptions of test utterances. This
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means that third-party systems could be used, provided that
they worked without human intervention. On the other hand,
besides the speech and text materials provided specifically for
this challenge, any other training or tuning materials could be
used. There was no limit to the type or amount of resources that
the participants could use to perform the task, as long as they
described the employed methods and resources with enough de-
tail and, as far as possible, provided links to papers, data and/or
software repositories that make it easier to reproduce their ap-
proach.

3. Datasets

For the development and evaluation of ASR systems, three
datasets are provided: training, tuning and evaluation, contain-
ing short (3-10 second long) speech utterances extracted from
Basque Parliament plenary sessions (see Table 1). The tran-
scriptions of the training set may slightly differ from audio con-
tents, while those of the tuning and evaluation sets have been
strictly supervised by human auditors in order to be safely used
as an ASR benchmark. Two training sets are defined: (1) train,
which includes all the available training utterances, no matter
the quality attributed to their transcriptions; and (2) train-clean,
which includes only the most reliable training utterances. On
the other hand, the tuning set is further divided into two sub-
sets: tuning-dev and tuning-test, designed for tuning and testing
purposes, respectively. The evaluation set (which is about 40%
larger than the tuning set) is designed to rank the ASR systems
developed for this challenge. Note that, since utterances in the
evaluation set have been also extracted from Basque Parliament
plenary sessions, the acoustic conditions, the set of speakers and
the distribution of languages are almost identical to those of the
training and tuning sets. Mismatches may arise only from words
not seen in the training and tuning sets. The training and tun-
ing sets can be accessed through a HugginFace repository'. The
evaluation set can be accessed through a different repository.

Each dataset is accompanied by an index file that offers
comprehensive information on each utterance (one per line): au-
dio filename, language and speaker tags, phone recognition rate
(which loosely reflects how close the transcription is to actual
audio contents), utterance length (in seconds) and transcription.
In the case of the evaluation dataset, the index file provided ini-
tially contained only audio filenames, without any further infor-
mation; the full index file (containing ground-truth transcrip-
tions, speaker and language tags) was distributed to participants
one week after the submission deadline, along with the results
obtained by their systems.

Table 1: Duration (in hours) of the datasets provided for this
challenge, disaggregated per language.

Set All Spanish Basque Bilingual
train 1445.1 1018.6 409.5 17.0
train-clean  1315.5 937.7 363.6 14.2
tuning-dev 7.6 4.7 2.6 0.3
tuning-test 9.6 6.4 2.8 0.4
eval 23.8 15.5 7.3 1.1

lhttps://huggingface.co/datasets/gttsehu/
Albayzin-2024-BBS-S2T

thtps://huggingface.co/datasets/gttsehu/
Albayzin-2024-BBS-S2T-eval
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It must be noted that, while the distribution of speakers is
balanced in terms of gender, the distribution of languages is not
balanced, with Spanish and Basque making up approximately
70% and 30% of the datasets, respectively. Since language tags
are associated with both training and tuning utterances, mono-
lingual ASR systems could be developed if desired. Also, lan-
guage tags could be used to train a Basque-Spanish language
detector. Note that, since most of the speakers contribute data
to all sets, models will be strongly adapted to those speakers and
ASR performance figures will be better than could be expected
under strict speaker independence conditions.

4. Performance metrics

The overall Word Error Rate (WER) will be used as the primary
metric to rank ASR systems. The submitted transcriptions will
be optimally aligned with the ground-truth transcriptions at the
word level. The aggregated number of deletions (D), insertions
(I), substitutions (.5') and matches (M) derived from such align-
ments will be used to obtain the overall WER, as follows:

WER = Dt 1+S

T D+S+M M

where the numerator accounts for the aggregated number of er-
rors and the denominator accounts for the aggregated length of
ground-truth transcriptions. We will also report, as a secondary
metric, the average WER per utterance, defined as follows:

N
1 Dy + I, + Sk
WERutt = N kE 1 ()

— Di + Sk + M,

where IV stands for the number of test utterances and Dy, i,
Sk and M}, stand for the number of deletions, insertions, sub-
stitutions and matches found in the optimal alignment of test
utterance k, respectively.

Finally, since some state-of-the-art approaches output se-
quences of characters (not words), the overall Character Error
Rate (CER) and the average Character Error Rate per utterance
(CER.utt) were also computed to study how well the recognized
sequences of characters matched the ground-truth. CER and
CERut¢ are defined analogously to WER and WER ¢, respec-
tively.

5. Baseline system

A baseline bilingual ASR system has been developed on the
training set and is freely available to participants [12]. We pro-
vide recipes to check its performance on the tuning set, using
the runing-dev subset for tuning the system and the tuning-test
subset for measuring its performance®. The baseline system
uses a pre-trained Wav2Vec 2.0 speech encoder [13] as front-
end, which produces a sequence of frame-level acoustic rep-
resentations. Then, a Connectionist Temporal Classification
(CTC) neural network backend [14] processes that sequence
and outputs a vector of grapheme posteriors for each input em-
bedding. This CTC backend is trained on in-domain data from
the Basque Parliament (the train-clean subset). Finally, possi-
bly constrained by the phonological and syntactic restrictions
introduced by lexical and language models, a search is per-
formed on the sequence of posteriors to output the sequence of
graphemes (including blanks) that maximizes the joint acoustic
and syntactic likelihood [15]. This baseline system has attained
an overall WER of about 3% on the tuning-test subset [12].

3https://huggingface.co/gttsehu/
wav2vec2-xls-r-300m-bpl-es_eu



6. Systems

Three teams registered to the BBS-S2T Challenge and submit-
ted 11 systems overall (see Table 2). In the following subsec-
tions, we summarize the main features of the systems developed
for this challenge.

Table 2: Teams submitting systems to the BBS-S2T Challenge.

Acronym Institution #Systems
Vicomtech Vicomtech 7
HiTZ-AhoLab EHU 2
PRHLT UPV 2

6.1. Vicomtech systems

The Vicomtech team submitted one primary and six contrastive
systems, all of them trained on about 5185 hours of training
data (3540, 1631 and 14 hours of Spanish, Basque and bilin-
gual speech, respectively), which is nearly 4 times the size of
the train-clean subset provided by the organization (which is
included in the bundle). The submitted systems exploit differ-
ent frameworks for the development of acoustic models based
on neural networks (K2/Icefall, Nvidia’s Parakeet, Kaldi and
Whisper), in some cases using a Language Model (n-grams or
Large Language Models (LLM)) for decoding [16].

The primary system and the first, second and fourth con-
trastive systems were based on RNN-Transducer (RNN-T)
End-to-End models developed with K2/Icefall [17], using 80-
dimensional log Mel-filter banks as input, a Zipformer acoustic
encoder and a stateless prediction network using Byte Pair En-
coding (BPE), and applying standard data augmentation tech-
niques (SpecAugment and speed perturbation).

The primary and second contrastive systems fused the out-
puts of the two RNN-T models yielding the lowest error rates on
the runing-test subset during the training process, using a voting
approach and a Llama 3 LLM to generate the best hypotheses.
The primary system applied a few-shot prompting strategy by
using manually selected in-domain examples to tune the LLM,
while the second contrastive system applied a zero-shot prompt-
ing strategy (that is, not using any in-domain examples to tune
the LLM).

The first and fourth contrastive systems used the best-
performing Zipformer-based RNN-T models for offline and on-
line/streaming applications, respectively. They differ only in
the type of convolutions allowed in the encoder layer: the first
contrastive system allowed both causal and non-causal convo-
lutions while the fourth contrastive system allowed only strictly
causal convolutions.

The third contrastive system applied a Fast-Conformer
Transducer model based on Nvidia’s Parakeet-RNNT-1.1B ar-
chitecture [18], trained from scratch in a multitask setup using
a Transducer decoder with RNN-T loss and a BPE tokenizer on
top of the decoder.

The fifth contrastive system was based on a Multistream
Convolutional Neural Network developed by means of the
Kaldi toolkit. The input to the network was a sequence of 40-
dimensional MFCC coefficients augmented with speed and vol-
ume perturbations, to which 100-dimensional ivectors were ap-
pended. For decoding, a 3-gram model was trained based on
in-domain and generic texts in Basque and Spanish.

The sixth contrastive system exploited the well-known
Whisper ASR engine [19]. The 1.55B large-v3 version of the
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Whisper model, originally trained on more than 5 million hours
of multilingual weakly labeled speech, was fine-tuned using
Low-Rank Adaptation (LoRA) [20] with all the available data in
Basque and Spanish. Since Whisper performs single-language
ASR, a language detection module was trained on the datasets
provided for the challenge and was applied in sliding windows
of 3 seconds with 1-second time shifts.

6.2. HiTZ-AhoLab systems

The HiTZ-AhoLab team submitted two (primary and con-
trastive) systems to the challenge. Both systems, devel-
oped under the Nvidia NeMo framework, were based on a
Conformer-Transducer model [21], involving a RNN-T decoder
with subword-level (BPE-based) encodings. Language model
rescoring was applied using a combination of n-grams and ei-
ther greedy or modified Adaptive Expansion Search (mAES)
decoding [22].

The acoustic models for this challenge were obtained by
fine-tuning pretrained models. Firstly a Conformer-Transducer
model was trained using 1340 hours of out-of-domain speech
data in Spanish. Then, this model was fine-tuned on 548 hours
of out-of-domain speech data in Basque. Finally, the model
was fine-tuned on in-domain speech data using the train-clean
subset. The language models were trained on the transcriptions
of the train-clean subset. The hyperparameters were optimized
on the tuning-dev subset and performance was evaluated on the
tuning-test subset.

After preliminary experiments to explore different config-
urations, the submitted systems were set to use 128 subwords,
the primary system implementing mAES decoding and the con-
trastive system using greedy decoding. More details can be
found in [23].

6.3. PRHLT systems

The PRHLT team submitted two (primary and contrastive) sys-
tems to the challenge, putting the focus on real-world applica-
tion, that is, on reducing the computational footprint (memory,
training and inference times) of the approach, rather than on
performance. The two PRHLT systems were developed from
scratch using only the datasets provided for this challenge. Both
systems employed the same non-autoregressive end-to-end ar-
chitecture: a Branchformer-based Mask-CTC model [24, 25],
implemented by means of the open-source ESPNet toolkit.

The primary system, with 43.3M parameters, implements
the whole architecture, while the contrastive system removes
the masking layer and the CMLM decoder, reducing the model
size to 33.7M parameters. More details can be found in [26].

7. Results

Table 3 presents the performance achieved by the submitted sys-
tems on the runing-test subset (as reported by participants) and
on the evaluation subset. Results for the baseline system are
included too for reference, using two variants: the first per-
forms an unconstrained search on the sequence of posteriors
provided by the CTC backend while the second applies a 3-
gram language model (trained on bilingual in-domain texts ex-
tracted from train-clean transcriptions) to constrain the search.

The best performance on the evaluation set was obtained by
the primary system of Vicomtech, with a WER of 1.89%, mean-
ing a 39% relative error reduction with regard to the uncon-
strained baseline system. In fact, the primary, first and second



Table 3: Performance attained by systems submitted to the BBS-S2T Challenge on the tuning-test set (as reported by participants) and
on the evaluation set. Performance figures for two variants of the baseline system are included too for reference.

tuning-test evaluation
System %WER %WER  %WERuit %CER  %CERutt
Baseline 3.34 3.11 3.64 1.01 1.17
Baseline-3gram 2.95 2.65 3.16 0.97 1.13
Vicomtech-p 2.34 1.89 2.26 0.79 0.94
Vicomtech-c1 2.35 1.91 2.27 0.80 0.94
Vicomtech-c2 2.34 1.90 2.26 0.79 0.93
Vicomtech-c3 2.88 2.64 3.19 1.13 1.36
Vicomtech-c4 2.89 2.60 3.08 1.08 1.27
Vicomtech-c5 3.89 3.59 4.15 1.15 1.32
Vicomtech-c6 4.02 4.13 4.88 1.44 1.63
HiTZ-AhoLab-p 2.67 2.15 2.57 0.85 1.00
HiTZ-AhoLab-cl 2.74 2.15 2.57 0.85 1.00
PRHLT-p 3.40 3.44 3.99 1.14 1.32
PRHLT-cl 3.50 3.56 4.14 1.17 1.35

contrastive systems of Vicomtech showed almost the same per-
formance, revealing that: (1) the few-shot prompting strategy in
the LLM did not help compared to the simpler zero-shot strat-
egy; and (2) the voting fusion approach did not help either, com-
pared to using the best single Zipformer-based RNN-T model.
On the other hand, the worse performance of Vicomtech-c4
compared to Vicomtech-c1 reveals the importance of using both
causal and non-causal convolutions instead of strictly causal
convolutions. Finally, Vicomtech-c3 performed slightly worse
than Vicomtech-c4, but clearly better than the two remaining
systems (Vicomtech-c5 and Vicomtech-c6), so we conclude that
RNN-T systems are superior to the other approaches explored
by Vicomtech.

The second-best primary system was the one submitted
by HiTZ-AhoLab, with 2.15% WER. This approach is similar
to Vicomtech-c3 but yielded better performance, probably due
to the way pretrained models were created and to the n-gram
rescoring method. In this regard, using mAES decoding did
not seem to help compared to using greedy decoding, because
the HiTZ-AhoLab contrastive system used greedy decoding and
performed exactly the same.

The third-best primary system was the one submitted by
PRHLT, with 3.44% WER. The PRHLT contrastive system per-
formed even worse, with a WER of 3.56%. Both figures are
worse than those of the baseline systems. These results can be
explained in several ways: (1) PRHLT systems did not lever-
age pretrained models, neither for fine-tuning nor for extracting
self-supervised acoustic representations; (2) the models were
trained from scratch using only the train-clean subset provided
for the challenge; and (3) no language model was used to con-
dition the search for the optimal sequence of words.

By analyzing the obtained results, best performance seems
to depend not only on the approach (RNN-T systems perform
better than other types of systems) but also on the amount of
speech data used for tuning or training the models: Vicomtech
used 5185 hours of training data, HiTZ-AhoLab used 3203
hours overall and PRHLT 1315.5 hours (the train-clean sub-
set). On the other hand, the baseline systems strongly relied
on a pretrained model (the Wav2Vec 2.0 embedding extractor)
trained on thousands of hours of unlabeled speech, the train-
clean subset being used only to train the CTC backend; besides,
the second baseline system used an in-domain 3-gram language
model to constrain the output.
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With regard to the datasets provided for the challenge, they
seem to be consistent, since no overfitting is observed and WER
figures are quite similar for the runing-test and evaluation sub-
sets, with all systems yielding slightly better results for the
latter. The average WER per utterance is remarkably higher
than the overall WER in all cases, which tell us about variabil-
ity in the set of testing utterances. Finally, CER performance
is around 1%, ranging from 0.79% (Vicomtech-p) to 1.17%
(PRHLT-c1). This means that all systems managed to get high-
quality transcriptions, with approximately one erroneous char-
acter every 100 decoded characters. Again, the average CER
per utterance is remarkably higher than the overall CER in all
cases, telling us that errors are not distributed uniformly among
the set of testing utterances.

7.1. Performance by language

An interesting line of analysis in a bilingual ASR challenge
regards how performance depends on the language. In this
challenge, three types of utterances are considered depending
on the spoken language: Basque, Spanish and bilingual (code-
switched speech). Table 4 presents the WER performance, dis-
aggregated per language, obtained by the primary systems on
the evaluation set.

Table 4: Overall WER (%) per language obtained by the pri-
mary systems on the evaluation set. Baseline systems are in-
cluded too for reference.

System All  Spanish Basque Bilingual
Baseline 3.11 2.65 4.57 2.81
Baseline-3gram  2.65 2.19 4.10 242
Vicomtech-p 1.89 1.59 2.86 1.66
HiTZ-AhoLab-p  2.15 1.75 3.32 2.59
PRHLT-p 3.44 3.07 4.55 3.42

Clearly, the most difficult utterances are those in Basque.
On average, error rates are 1.7 times higher for Basque than for
Spanish. The most reasonable explanation is that the datasets
used in this evaluation (including those provided by the or-
ganization) were strongly unbalanced towards Spanish. More
datasets in Basque should be collected in the future to address
this imbalance.



Table 5: Number of parameters of the models, CPU/GPU hardware (Hw), memory (GB) and processing time (real-time factor, xRT)
reported by participants for training and decoding. Information for the baseline systems is included too.

Training Decoding
System #params Hw Mem(GB)  xRT Hw Mem(GB)  xRT
Baseline 300M 4xRTX-A5000 120.0 0.029 | 1xRTX-A5000 5.2 0.005
Baseline-3gram 300M 4xRTX-A5000 120.0 0.029 | 1xRTX-AS5000 5.3 0.006
Vicomtech-p 8B+2x148M 2xL.40 5.7 0.166 1XxL40+RTX 6.7 0.13
Vicomtech-cl 148M 2xL.40 5.7 0.166 1xL40 5.4 0.02
Vicomtech-c2 8B+2x148M 2xL40 5.7 0.166 1xL40+RTX 6.7 0.04
Vicomtech-c3 1.1B 1xL40S 20.1 0.042 1xL40S 3.1 0.65
Vicomtech-c4 148M 3xL40 5.7 0.073 1xL40 5.4 0.02
Vicomtech-c5 20M 5xGTX 5.0 0.287 10xCPU 8.0 3.36
Vicomtech-c6 1.55B 2xA40 12.0 0.048 1XxRTX 3.0 0.55
HiTZ-AhoLab-p 119M NxA100-SXM4 - 0.07 A100-SXM4 - 0.17
HiTZ-AhoLab-c1 119M NxA100-SXM4 - 0.07 A100-SXM4 - 0.006
PRHLT-p 43.3M RTX4090 - 0.055 RTX4090 - 0.01
PRHLT-cl 33. "M RTX4090 - 0.055 Intel-i3-6100 - 0.03

Another interesting observation is the relatively low error
rates obtained for code-switched (bilingual) utterances. This
may be explained by the dominance of Spanish over Basque
in bilingual utterances, so the WER of bilingual utterances is
close to that of Spanish utterances. In this regard, the primary
HiTZ-AhoLab system was the one that presented the greatest
difficulties with bilingual utterances, with an increase in WER
of 48% compared to the WER obtained on Spanish utterances.

7.2. Computational issues

Not only the performance is relevant, but also the computational
requirements of the proposed approaches, which may be be-
yond the reach of end users. An ASR system that can be im-
plemented on a relatively weak platform and meets low latency
constraints for real-time operation is crucial in real-world appli-
cations. Table 5 presents the computational resources employed
by the systems submitted to this challenge, as reported by the
participants (with some items missing and other items being un-
derspecified). For the sake of completeness, information for the
baseline systems is presented too.

The largest models are Vicomtech-p and Vicomtech-c2,
both yielding top performance. Interestingly, a much smaller
system like Vicomtech-c1 also offers top performance. On the
other hand, one of the largest models, the fine-tuned Whis-
per model (Vicomtech-c6, with 1.55B parameters), yields the
worst performance among all the presented systems. Training
times depend on the amount of training data and the hardware
(GPU/CPU) employed: the real-time factors range from 0.287
(Vicomtech-c5, meaning 1488 hours) to 0.042 (Vicomtech-c3,
meaning 220 hours). In the case of the baseline systems,
the real-time factor of 0.029 represents about 38 hours, be-
cause only the train-clean subset was used. The real-time fac-
tors reported for decoding range from 0.006 (HiTZ-AhoLab-
cl, meaning less than 9 minutes) to 3.36 (Vicomtech-c5, mean-
ing about 80 hours), though we do not know neither how many
GPUs were used in the former case nor the type of CPUs used in
the latter case. Among the best performing systems, Vicomtech-
cl is the smallest one, with 148M parameters, and also the
fastest in decoding, with a real time factor of 0.02 (i.e. about
29 minutes).

323

8. Summary, conclusions and future work

In this paper, the main features of the Albayzin 2024 Bilingual
Basque-Spanish Speech-to-Text (BBS-S2T) Challenge have
been presented, including the datasets, the baseline systems, the
performance measures, the systems submitted and the obtained
results, which were briefly analyzed. This was the first bilin-
gual ASR evaluation proposed as part of the Albayzin evalua-
tion campaigns.

A total of 11 systems were submitted to the challenge by
three participating teams. The best system yielded an overall
WER of 1.89%, which represents a 39% relative error reduc-
tion with regard to the baseline system. In all cases, the worst
performance was found for Basque, with error rates 1.7 times
higher (on average) than those obtained for Spanish. This is
probably due to the smaller amount of training data (speech and
text) available for Basque, compared to Spanish. On the other
hand, the performance on bilingual utterances was remarkably
good, close to that obtained for Spanish, probably due to the
dominance of Spanish over Basque in code-switched utterances.

The main conclusion regarding the applied technologies is
that RNN-Transducer systems performed better than other ap-
proaches. Among the RNN-Transducer systems, the Zipformer-
based RNN-T models using Byte Pair Encoding (BPE) obtained
the best performance, but the large amount of data used to train
these systems could be as important as the model itself when
compared to other RNN-T systems trained on smaller amounts
of data. There appears to be a high correlation between the
amount of training data and the performance achieved.

Future efforts for the advancement of bilingual Basque-
Spanish ASR technology should focus on collecting more data
for Basque. Also, given the low error rates obtained in this
evaluation, more challenging benchmarks should be developed,
involving more speakers and more adverse conditions (spon-
taneous speech, noisy channels and/or environments, etc.). In
particular, future benchmarks should remove the speaker de-
pendence intrinsic to this evaluation: the training, tuning and
evaluation datasets should feature disjoint sets of speakers. Fu-
ture benchmarks may also consider the combination of multi-
lingual ASR and machine translation, i.e. the development of
systems that produce texts in a target language (Basque, Span-
ish or other) regardless of the languages spoken in the input
speech.
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