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Abstract
SVM-based phonotactic language recognition is state-of-the-art
technology. However, due to computational bounds, phonotac-
tic information is usually limited to low-order phone n-grams
(up to n = 3). In a previous work, we proposed a feature selec-
tion algorithm, based on n-gram frequencies, which allowed us
work successfully with high-order n-grams on the NIST 2007
LRE database. In this work, we use two feature projection met-
hods for dimensionality reduction of feature spaces including
up to 4-grams: Principal Component Analysis (PCA) and Ran-
dom Projection. These methods allow us to attain competitive
performance even for small feature sets (e.g. of size 500). Sys-
tems were built by means of open software (BUT phone deco-
ders, HTK, SRILM, LIBLINEAR and FoCal) and experiments
were carried out on the NIST 2009 LRE database. Best perfor-
mance was attained by using the feature selection algorithm to
get around 11500 features: 1.93% EER and CLLR = 0.413.
When considering smaller sets of features, PCA provided best
performance. For instance, using PCA to get a 500-dimensional
feature subspace yielded 2.15% EER and CLLR = 0.457 (25%
improvement with regard to using feature selection).
Index Terms: Phonotactic Language Recognition, SVM, High-
Order n-grams, Feature Selection, Principal Component Analy-
sis, Random Projection

1. Introduction
For Spoken Language Recognition (SLR) tasks, two main com-
plementary approaches are typically used [1]: low level acous-
tic modeling and high level phonotactic modeling. To model
the target language, low level acoustic systems take information
from the spectral characteristics of the audio signal, whereas
high level phonotactic systems use sequences of phones produ-
ced by Parallel Phone Recognizers (PPR).

In this paper, we focus on the currently most common pho-
notactic approach: counts of phone n-grams are used to build
feature vectors which feed a discriminative classifier based on
Support Vector Machines (SVM) [2]. In general, N phone de-
coders are applied to the input utterance, yielding N phone de-
codings. The output of each decoder i (i ∈ [1, N ]) is scored
for each target language j (j ∈ [1, L]), by applying the SVM
model λ(i, j) (estimated using the outputs of the phone deco-
der i for a training database, taking j as the target language).
Scores for the subsystem i are calibrated, typically by means of
a Gaussian backend. Finally, N × L calibrated scores are fu-
sed applying linear logistic regression, to get L final scores for

This work has been supported by the University of the Basque
Country under grant GIU10/18, by the Government of the Basque
Country under program SAIOTEK (project S-PE10UN87) and by the
Spanish MICINN under Plan Nacional de I+D+i (project TIN2009-
07446, partially financed by FEDER funds).

which a minimum expected cost Bayes decision is taken, accor-
ding to application-dependent language priors and costs (see [3]
for details).

The performance of each phone recognizer can be increa-
sed significantly by computing the statistics from phone lattices
instead of 1-best phone strings [4], since lattices provide richer
and more robust information. Another way to increase system
performance is the use of high-order n-gram counts, which are
expected to contain more discriminant (more language-specific)
information. Since, the number of n-grams grows exponentially
as n increases, dimensionality reduction techniques must be ap-
plied to get SVM vectors of a reasonable size. Usually feature
selection methods are applied [5]: (1) feature selection based
on frequency (low frequency n-grams are discarded); and (2)
discriminative feature selection, which takes into account the
rank of feature weights in the SVM vectors (least discriminant
n-grams are discarded) [5] [6]. In both cases, optimal selection
requires building complete vectors (i.e. vector containing all the
components). Again, the huge amount of n-grams for n ≥ 4
makes it computationally unfeasible a brute-force approach to
selecting n-grams. In [5], a kind of suboptimal expansion has
been proposed: starting from a relatively small trigram SVM
system, a 4-gram SVM system is built by using an alternating
wrapper/filter method. In the wrapper step, the most discrimi-
nant/frequent trigrams are selected. Then, in the filter step, the
subset of 4-grams is generated by appending/prepending each
phone in the phone set to each selected trigram.

In a recent work [7], we have proposed a new n-gram se-
lection algorithm that allows the use of high-order n-grams to
improve the performance of a baseline system based on trigram
SVMs. The algorithm requires one single parameter: M , the
desired number of features, and works by dynamically updating
a ranked list of the most frequent units (from unigrams to n-
grams), retaining only those units whose counts are higher than
a given threshold. Finally, after processing all the training data,
the M most frequent units are used.

In this work, we propose and evaluate a hybrid approach
that combines feature selection and feature projection for di-
mensionality reduction. First, the selection algorithm proposed
in [7] is applied to get an optimal medium-size set of features,
an then a feature projection method is applied to get smaller
sets of features with low performance degradation. In [8], Prin-
cipal Component Analysis (PCA) was successfully applied as
a feature transformation method on the NIST 2009 LRE da-
tabase. Random Projection has been also proposed for other
applications, such as face recognition and information retrieval
in text documents [9], the original high-dimensional data being
projected onto a lower-dimensional random subspace. In this
work, both PCA and Random Projection have been tested for
dimensionality reduction after feature selection.



The rest of the paper is organized as follows. Section 2 pre-
sents the experimental setup and the baseline phonotactic lan-
guage recognition system used in this work. Section 3 descri-
bes the proposed feature projection methods. Results obtained
in language recognition experiments on the NIST 2009 LRE
database are presented in Section 4. Finally, conclusions are
summarized in Section 5.

2. Experimental Setup
2.1. Phone lattices

An energy-based voice activity detector was applied in first
place, which split and removed long-duration non-speech seg-
ments from signals. Then, the Temporal Patterns Neural Net-
work (TRAPs/NN) phone decoders, developed by the Brno Uni-
versity of Technology (BUT) for Czech (CZ), Hungarian (HU)
and Russian (RU) [10], were applied to perform phone tokeni-
zation. Before processing phone sequences, non-phonetic units:
int (intermittent noise), pau (short pause) and spk (non-speech
speaker noise) were mapped to a single non-phonetic unit. Af-
ter that, the number of units was 43 for Czech, 59 for Hunga-
rian and 50 for Russian. Since each BUT decoder runs its own
acoustic front-end, channel compensation and noise reduction
for all the systems presented in this paper relied on the acoustic
front-end provided by BUT decoders.

Posterior probabilities from BUT recognizers were used as
input to the HVite decoder from HTK [11] to produce phone lat-
tices, which encode multiple phonetic hypotheses with acoustic
likelihoods. Finally, the lattice-tool from SRILM [12] was used
to produce the expected counts of phone n-grams.

2.2. Ranked Sparse Representation

In this work, up to 4-grams were considered. Therefore, using
the raw SVM feature space became almost unfeasible, due to its
huge dimension: the number of possible 4-grams could be up
to 594. A sparse representation was used instead, which invol-
ved only the most frequent features. That is, instead of using
a full space representation, features were ranked according to
their counts on the training dataset, using a feature selection
algorithm based on frequency [7], and only those features (uni-
grams + bigrams + . . . + n-grams) with the M highest counts
were considered.

The selection algorithm works by periodically updating a
ranked list (a hash table indexed by features and storing counts)
of the most frequent units, so it doesn’t need to index all the
possible n-grams, but just a relatively small subset of them.
The process involves accumulating counts until their sum gets
higher than K, and updating the ranked list of units by retai-
ning only those counts higher than a given threshold τ . At each
update, all the counts lower than τ are implicitly set to zero.
This means that the selection process is suboptimal, since many
counts are discarded at each update. The algorithm outputs the
M leading items of the ranked list; note that K and τ must be
tuned so that enough number of alive counts (at least, M ) are
kept at each update. In this work, we heuristically fixed K=106

and τ=0.1 to get about M = 100000.
ThoughM (the number of selected features) can take a high

value, given an input utterance, most features have null counts
and are not explicitly included in the representation (recall that
a sparse representation is used), so the actual size of the SVM
feature vector is far less than M . Note also that the longer an
utterance is, the more dense the feature vector is, and there-
fore, test utterances (which are around 30 seconds long) pro-

duce more sparse feature vectors than training utterances (see
Table 1 for details).

2.3. SVM modeling

The SLR systems developed in this work follow the SVM pho-
notactic approach. SVM vectors consist of counts of features
representing the phonotactics of an input utterance, in particu-
lar phone n-grams up to n = 4 weighted as in [5]. A Crammer
and Singer solver for multiclass SVMs with linear kernels has
been applied, by means of LIBLINEAR [13], which has been
modified by adding some lines of code to compute regression
values. Finally, systems are built by fusing the scores of three
calibrated SVM-based phonotactic subsystems (one per BUT
decoder). The FoCal toolkit has been used for calibration and
fusion (see [3] for details).

2.4. Train, development and evaluation datasets

Train and development data were limited to those distributed by
NIST to all 2009 LRE participants [14]: (1) conversational te-
lephone speech from previous LREs: the Call-Friend Corpus,
the OHSU Corpus provided by NIST for LRE05 and the deve-
lopment corpus provided by NIST for the 2007 LRE; and (2) na-
rrow band (telephone channel) speech segments from Voice Of
America (VOA) broadcast news recordings (provided by NIST
for the 2009 LRE).

A set of 64 languages/dialects was defined. Each of them
was mapped either to a target language of the NIST 2009 LRE
or to Out-Of-Set (OOS). For example, Mainland and Taiwan
from the NIST 2007 LRE and Mandarin from VOA were all
mapped to Mandarin, whereas Arabic was mapped to OOS. Per-
sian and Farsi were mapped to the same language, as was pro-
perly pointed in [15]. For the languages appearing in VOA re-
cordings, the longest speech segment out of each file was posted
to the train dataset, with a minimum of 225 segments per lan-
guage. The number of segments extracted per file was relaxed
(augmented) for those languages with few files in VOA. The
train dataset consisted of 43278 segments, which amounted to
2286 hours. For development, speech segments lasting around
30 seconds (between 25 and 35 seconds) were randomly extrac-
ted, using no more than 2 segments per file, and a minimum of
225 segments per language. The development dataset consis-
ted of 13269 segments, which amounted to around 110 hours.
Evaluation was carried out on the NIST 2009 LRE evaluation
corpus, specifically on the 30-second, closed-set condition (pri-
mary evaluation task).

2.5. Evaluation measures

In this work, systems will be compared in terms of Equal Error
Rate (EER), which, along with DET curves, is the most com-
mon way of comparing the performance of language recogni-
tion systems, but also in terms of the so called CLLR [16], an
alternative performance measure used in NIST evaluations.

3. Feature Dimensionality Reduction
When using high order n-grams in SVM-based Phonotactic
Language Recognition, the dimensionality of the feature vec-
tors may be intractable in terms of memory and time require-
ments. Dimensionality reduction can be carried out by selec-
ting the most relevant features, based on their relative frequency
or even on more complex discriminative properties [5, 6]. On
the other hand, by applying PCA, the source feature space can



be projected onto a lower-dimensional orthogonal subspace that
captures as much of the variation as possible [8]. Somehow re-
lated to PCA, Random Projection is a computationally low-cost
method that projects features onto a lower-dimensional ortho-
gonal random subspace without introducing a significant dis-
tortion [9].

However, when dealing with high-dimensionality spaces
even a simple frequency ranking could be unfeasible, as has
been noted in Section 2.2. Therefore, as a first step, a frequency
based selection may be carried out in order to reduce the number
of features to a tractable value. In this work, such value was set
to 100000. Table 1 shows the accumulated posterior probability
(in %) –computed on the set of n-grams of the train dataset–,
as a function of the number of features retained by the feature
selection algorithm.

Starting from the 100000 most frequent features, dimen-
sionality reduction onto feature subspaces of 10000 to 500 di-
mensions was performed by means of frequency-based feature
selection, PCA and Random Projection. Details are given in the
following sections.

3.1. Frequency-based feature selection

The same ranking used to select the 100000 most frequent fea-
tures was used to further reduce the feature set. Unlike the
projection approaches (addressed below), which produce dense
vectors, the feature selection algorithm produces sparse vectors.
Since the SVM software uses a sparse data representation, the
key property (in terms of time and memory requirements) is not
the dimension of the feature space, but the actual size of fea-
ture vectors (i.e. how many features have non-null counts on
average). Therefore, the selection parameter M was set to va-
lues for which the average vector size matched one of the target
subspace dimensions used in the projection approaches. Table
1 shows the average size of feature vectors for the train and test
datasets and different number of features. Note that test seg-
ments produced more sparse feature vectors because they were
shorter than train segments.

3.2. Principal Component Analysis

PCA projection was done as proposed in [8]. A language balan-
ced random subset of the train dataset (22500 segments out of
43278) was used. PCA was performed on the SVM input space
(consisting of weighted expected n-gram counts), and principal
components were computed using the randomized algorithm for
PCA as defined in [17] (Section 4.3 - A modified algorithm).

3.3. Random projection

Random projection is a well-known method used in dimen-
sionality reduction. It is based on the Johnson-Lindenstrauss
lemma [18], which states that if a set of points in a high-
dimensional Euclidean space is projected onto a lower dimen-
sional random subspace, pairwise distances are nearly preser-
ved. Instead of finding an orthogonal random projection matrix,
it is possible to simply use a random matrix, because in a high-
dimensional space, vectors having random directions might be
sufficiently close to orthogonal [9]. The dense gaussian random
matrix R can be further simplified by a sparse random matrix
with elements drawn from the Achlioptas distribution [19]:

rij =
√
3·

 +1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

1 ≤ i ≤ dim
1 ≤ j ≤ dimreduced

Preliminary experiments showed that performance degra-
dation when using random projection was drastically reduced
(from 11% EER down to 4% EER when reducing feature di-
mensionality to 500) if the random vectors used to build the
matrix R were weighted with the background average feature
values, r̃ij = rij · fi.

4. Results
The NIST 2009 LRE test set was used to evaluate systems im-
plementing the proposed approaches, more specifically the 30-
second, closed-set condition (core condition). Note again that
we call system to the fusion of three subsystems, each corres-
ponding to a TRAPS/NN phone decoder (for Czech, Hungarian
and Russian).

Table 1 shows EER and CLLR performance using the
frequency-based feature selection algorithm for different values
of M (number of selected features). M ranged from 27732
down to 526, for the average size of feature vectors matched the
target dimensions used in PCA and Random Projection (10000
down to 500).

Table 1: Average size of feature vectors, accumulated poste-
rior probability (%), % EER and CLLR on the NIST 2009 LRE
closed-set 30s evaluation set, for various 4-gram SVM systems
working on feature sets obtained with the frequency-based fea-
ture selection algorithm.

Avg Vector Size AccProb
M train test (%) %EER CLLR

100000 17876 5670 95 1.98 0.421
27732 10000 3773 86 1.97 0.416
18685 8000 3233 83 1.95 0.412
11697 6000 2648 79 1.93 0.413
6417 4000 1997 73 1.96 0.427
4319 3000 1631 70 2.03 0.432
2556 2000 1302 65 2.25 0.468
1125 1000 726 58 2.42 0.511
526 500 416 51 2.92 0.612

In contrast to previous results ([8] and [6]), where perfor-
mance was significantly compromised when frequency-based
feature selection was applied, we did not observe any degra-
dation but a slight improvement when up to 6417 (the most
frequent) features were kept (which is equivalent to projecting
down to 4000 dimensions). Note that in [8] feature vectors con-
tained the square roots of expected n-gram counts, and in [6]
n-gram probabilities were used, whereas we used weighted n-
gram probabilities (see [5]). In our experiments, best perfor-
mance was achieved when using the 11697 most frequent fea-
tures (which is equivalent to projecting down to 6000 dimen-
sions). Such a simple and effective selection algorithm reduces
memory and time requirements to affordable values with no ad-
ded complexity.

Table 2 shows performance results using both PCA and
random projection to project the source feature space down
to 10000-500 dimensions. PCA outperformed the frequency-
based feature selection method only for dimensions below
3000. Random projection led to worse (yet comparable) per-
formance.

Though PCA outperformed the feature selection approach,
both PCA computation (even when using the randomized al-
gorithm) and projection are computationally expensive in high
dimensional source spaces. Random projection can be done on
the fly, but results were not satisfactory, and many other random



Table 2: EER and CLLR on the NIST 2009 LRE closed-set 30s
evaluation set, for various 4-gram SVM systems working on
feature sets obtained with Principal Component Analysis and
Random Projection.

PCA Random
Size %EER CLLR %EER CLLR

10000 1.96 0.421 2.33 0.497
8000 1.89 0.414 2.35 0.502
6000 1.97 0.424 2.40 0.509
4000 2.00 0.424 2.53 0.532
3000 1.97 0.430 2.65 0.557
2000 2.02 0.430 2.83 0.597
1000 2.12 0.449 3.25 0.669
500 2.19 0.470 4.09 0.801

projection alternatives should be explored in the future. The
cost of PCA can be drastically reduced by reducing the dimen-
sionality of the source feature space, e.g. by applying feature se-
lection. Table 3 shows performance when using the 11697 most
frequent features as source space, and projecting it down to
4000-500 dimensions using both PCA and random projection.
Both methods attained slightly better performance than that at-
tained when starting from the original 100000-dimensional fea-
ture space.

Table 3: EER andCLLR for various 4-gram SVM systems wor-
king on initial feature selection set of the 11697 most frequent
features and posterior PCA and random projection.

PCA Random
Size %EER CLLR %EER CLLR

4000 1,95 0,411 2,48 0,529
3000 1,95 0,416 2,65 0,553
2000 2,00 0,425 2,82 0,585
1000 2,03 0,435 3,16 0,658
500 2,15 0,457 3,77 0,761

5. Conclusions
In this work, different dimensionality reduction methods for
high-dimensional (high-order n-gram) SVM-based Phonotactic
Language Recognition have been studied. Results indicate that
frequency-based feature selection is the most effective method
(in terms of computational cost and performance) for dimensio-
nality reduction. If extremely low dimensionality was desired,
PCA should be used. In such a case, the computational cost of
PCA estimation and projection can be reduced by first applying
frequency-based feature selection on the source space. Random
projections are an interesting and computationally simple alter-
native to PCA, but the results obtained in this work suggest that
further research is needed to make an effective use and get per-
formance gains from such projections or similar alternatives.
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