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Abstract

Most common approaches to phonotactic language
recognition deal with several independent phone decod-
ings. These decodings are processed and scored in a
fully uncoupled way, their time alignment (and the infor-
mation that may be extracted from it) being completely
lost. Recently, a new approach to phonotactic language
recognition has been presented [1], which takes into ac-
count time alignment information, by considering cross-
decoder phone co-occurrences at the frame level, under
two language modeling paradigms: smoothedn-grams
and Support Vector Machines (SVM). Experiments on
the NIST LRE2007 database demonstrated that using
phone co-occurrence statistics could improve the perfor-
mance of baseline phonotactic recognizers. In this paper,
two variants of the cross-decoder phone co-occurrence
SVM-based approach are proposed, by considering: (1)
n-grams (up to 3-grams) of phone co-occurrences; and
(2) co-occurrences of phonen-grams (up to 3-grams).
To evaluate these approaches, a choice of open software
(Brno University of Technology phone decoders, LIB-
LINEAR and FoCal) was used, and experiments were
carried out on the NIST LRE2007 database. Unlike those
presented in [1], the two approaches presented in this pa-
per outperformed the baseline phonotactic system, yield-
ing around 16% relative improvement in terms of EER.
The best fused system attained a 1,88% EER (a 30%
improvement with regard to the baseline system), which
supports the use of cross-decoder dependencies for lan-
guage modeling.

1. Introduction

Phonotactic language recognizers exploit the ability of
phone decoders to convert a speech utterance into a
sequence of phones containing acoustic, phonetic and
phonological information. Models for target languages
are built by decoding hundreds or even thousands of train-
ing utterances and using the phone-sequence (or phone-
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lattice) statistics (typically, counts ofn-grams) in differ-
ent ways. Since training data feature a wide range of
speakers and diverse linguistic contents, beinglanguage
the common factor, it is expected that phone statistics re-
flect language-specific characteristics.

The most common phonotactic approaches are the so
called PPRLM (Parallel Phone Recognizers followed by
Language Models) [2], referred to as Phone-LM in this
paper, and Phone-SVM (Support Vector Machines ap-
plied on counts of phonen-grams) [3]. In both cases,N
phone decoders are applied to the input utterance, yield-
ing N phone decodings (or lattices). The output of the
phone decoderi (i ∈ [1, N ]) is scored for each target
languagej (j ∈ [1, L]), by applying the modelλ(i, j)
(estimated using the outputs of the phone decoderi for
the training database, takingj as the target language).
Scores for the subsystemi are calibrated, typically by
means of a Gaussian backend. Sometimes, a t-norm [4]
is applied before calibration. Finally,N × L calibrated
scores are fused applying linear logistic regression, to get
L final scores for which a minimum expected cost Bayes
decision is taken, according to application-dependent lan-
guage priors and costs (see [5, 6] for details). Figure 1
shows the structure of a typical phonotactic language rec-
ognizer.

Figure 1: A phonotactic language recognition system.



However, the above described structure definesN
independent data processing channels, and no cross-
decoder dependencies are exploited for language model-
ing, information being fused only at the score level. The
idea of using phonetic information in the cross-stream
(cross-decoder) dimension was first applied for speaker
recognition in the Johns Hopkins University (JHU) 2002
Workshop [7], where two decoupled time and cross-
stream dimensions were modelled separately and inte-
grated at the score level. Some years later, cross-stream
dependencies were also used via multi-string alignments
in a language recognition application [8].

Recently, a simple approach has been proposed which
takes into account cross-decoder phone co-occurrences at
the frame level [1]. In that approach, phone segmentation
is extracted as side information from 1-best phone decod-
ings, and allows us to consider theco-occurrenceof N
phone labels (one per decoder) at each frame. This way,
a frame-synchronous sequence of multi-phone labels can
be defined and used for modeling purposes, following ei-
ther the Phone-LM or the Phone-SVM approaches. The
simplest case consists of considering just two decoders
A and B (out ofN ) and using sequences of two-phone
labels, which can be processed and modelled exactly the
same way as single-phone sequences (see Figure 2).

In fact, N(N − 1)/2 of such 2-decoder subsystems
can be defined and fused at the score level to get a
full 2-phone co-occurrence system. This configuration
can be easily generalized tok-decoder subsystems (k =
3, 4, . . . , N ). As for n-grams, the number of possiblek-
phone co-occurrences increases exponentially withk, so
in this work only 2-phone and 3-phone co-occurrences
will be considered.

Figure 2: A 2-decoder phone co-occurrence language
recognition subsystem.

In experiments on the NIST LRE2007 database, us-
ing Brno University of Technology (BUT) decoders for
Czech, Hungarian and Russian [9], it was shown that fus-
ing baseline phonotactic systems with systems based on
cross-decoder phone co-occurrences led to improved per-
formance in all the cases (see [1] for details). However,
systems based on cross-decoder phone co-occurrences
did not outperform the baseline phonotactic systems. On
the other hand, systems using 2-phone co-occurrences
yielded better performance than those using 3-phone co-

occurrences. When using 2-phone co-occurrences, the
Phone-LM approach outperformed Phone-SVM, proba-
bly due to the fact that only unigram statistics were used
in Phone-SVM, whereas up to 4-grams were considered
in Phone-LM.

The work presented in this paper focuses on exploring
different ways of exploiting the information contained in
2-phone and 3-phone co-occurrence sequences in SVM-
based phonotactic language recognition. Two variants of
the approach presented in [1] are proposed. In the first
one, SVM vectors consist of counts of up to 3-grams
(instead of just unigrams) of 2-phone and 3-phone co-
occurrences. The second one does not considern-grams
of phone co-occurrences, but co-occurrences of phone
n-grams (up to 3-grams). These approaches have been
evaluated using open software (BUT phone decoders, LI-
BLINEAR and FoCal) and a relevant database (NIST
LRE2007).

The rest of the paper is organized as follows. The
baseline phonotactic system used in this work is de-
scribed in Section 2. Approaches based on cross-decoder
phone co-occurrences are described in Section 3. The
experimental setup is briefly described in Section 4. Re-
sults of language recognition experiments on the NIST
LRE2007 database (pooled for all the target languages)
are presented and discussed in Section 5. Finally, conclu-
sions and potential lines for future work are outlined in
Section 6.

2. Baseline SVM-based Phonotactic
Language Recognizer

The TRAPS/NN phone decoders developed by the Brno
University of Technology (BUT) for Czech (CZ), Hun-
garian (HU) and Russian (RU) [9] are the core elements
of all the systems developed in this work. BUT decoders
have been previously used by other groups (besides BUT
[10], the MIT Lincoln Laboratory [11]) as the core el-
ements of their phonotactic language recognizers, with
high-accuracy results. Non phonetic units appearing in
the decodings (int, pau andspk) are mapped to silence
(sil). After this, output dimensions for BUT decoders
are 43 (CZ), 59 (HU) and 49 (RU), respectively. Before
doing phone tokenization, an energy-based voice activity
detector is applied to split and remove non-speech seg-
ments from the signals. Since each BUT decoder runs an
acoustic front-end, it can be seen as a black box which
takes a speech signal as input and gives the 1-best phone
decoding as output. Regarding channel compensation,
noise reduction, etc. all the systems presented in this
paper rely on the acoustic front-end embedded in BUT
decoders.

In the baseline system, phone sequences are modelled
by means of Support Vector Machines (SVM). SVM vec-
tors consist of counts of phonen-grams (up to trigrams),
weighted as proposed in [12]. A Crammer and Singer



solver for multiclass SVMs with linear kernels has been
applied, by means of LIBLINEAR [13] (much faster than
libSVM [14] when using linear kernels), which has been
modified by adding some lines of code to compute regres-
sion values.

Finally, the baseline system is built by fusing the
scores of three calibrated SVM-based phonotactic sub-
systems, for Czech, Hungarian and Russian decoders.
TheFoCal toolkit is used for calibration and fusion [5, 6].

3. Improved Modeling of Cross-Decoder
Phone Co-occurrences

In the following paragraphs, we describe two approaches
that make use of cross-decoder co-occurrences to model
target languages in SVM-based phonotactic language
recognition. The first approach usesn-grams of cross-
decoder phone co-occurrences; the second one, counts of
cross-decoder co-occurrences of phonen-grams.

3.1. Approach 1: n-grams of phone co-occurrences

Let us consider an input sequence of feature vectors
X = (X1, . . . , XT ), T being the length ofX, and
assume thatN phone decoders are available. The 1-
best phone segmentations produced by such decoders are
given by: S(d)(X) = {s

(d)
1 , . . . , s

(d)
T }, d ∈ [1, N ], s(d)t

being the phone label produced by decoderd at frame
t. A cross-decoder time-synchronous (frame level)k-
phone co-occurrence is defined by thek-tuple cπ(t) =

(s
(d1)
t , s

(d2)
t , . . . , s

(dk)
t ), π = (d1, d2, . . . , dk) being a

choice ofk decoders, withk ∈ [2, N ]. A sequence of
3-phone co-occurrences (corresponding to 3 decoders) is
depicted in Figure 3. Note that a sequence ofk-phone co-
occurrencesCπ = (cπ(1), cπ(2), . . . , cπ(T )) includes
information from both time and cross-stream dimensions.

We make the assumption that sequences ofk-phone
co-occurrences are somehow language-specific. So, a
language recognition system could be built by counting
such events for a training database and estimating SVM-
based language models, which should be able to discrim-
inate target languages from each other. There can be de-
fined N !/k!(N − k)! of such systems, which could be
applied on an independent way and their scores fused to
get a full cross-decoder phone co-occurrence language
recognition system. To keep computational costs reason-
ably low, in this work frame-level phone co-occurrences
are considered only fork = 2 andk = 3 decoders.

In this work, we aimed to model cross-decoder seg-
mental (phone-level) dependencies, not cross-decoder
frame-level dependencies. The use of frame-level phone
labels was motivated just by the need to synchronize
phone decodings with each other. A sort of segmen-
tal representation can be recovered by reducing each
sequence of repeated co-occurrences to a single label.
However, when analyzing frame-level sequences, two
types of segments can be identified: (1)stationary

segments, corresponding to relatively long portions of
speech for which decoders keep the same labels; and (2)
transitional segments, appearing at phone borders, result-
ing from the fact that each decoder detects phone tran-
sitions at different points (see an example in Figure 3).
We hypothesize that phone co-occurrences correspond-
ing to transitional segments reflect random variations in
the way each decoder determines phone boundaries and
may distort language models. So, before reducing long
sequences (stationary segments), short sequences (transi-
tional segments) are filtered out. In this work, this is done
by replacing the co-occurrence label at each frame by the
mode computed on a window of size 7 around it (applied
iteratively until convergence) which roughly makes se-
quences of length shorter than 3 to beabsorbedby the
surrounding sequences (see an example in Figure 3).

The resulting sequences of phone co-occurrences are
then used to computen-grams, which can be applied ei-
ther to estimate SVM parameters or to score an input sig-
nal with regard to SVM-based language models. In [1],
a complete representation of phone co-occurrences was
used, so that SVM vectors comprised between 2000 and
3000 unigrams for 2-decoder configurations and more
than 124000 unigrams for a 3-decoder configuration. Un-
der such a complete representation, including bigrams
and trigrams of phone co-occurrences in SVM vectors
was prohibitive. In this work, a sparse representation is
used instead, which involves only then-grams seen more
than 30 times in training data. This way, the represen-
tation is bounded above by the amount of data used to
compute the statistics. In practice, the size of SVM vec-
tors defined this way (including up to trigrams) is always
less than 10000.

3.2. Approach 2: co-occurrences of phone n-grams

The second approach consists of considering cross-
decoder co-occurrences of phonen-grams, generalizing
the first approach, which is limited to phone unigrams.
This generalization involves an important change when
counting co-occurrences at frame level: for any given
decoder, up ton n-grams can overlap at each framet,
which means that up tonk phonen-grams can co-occur
at the same frame for a choice ofk decoders. So, a pro-
cedure must be designed for distributing co-occurrence
counts at frame level. This procedure will allow us to
circumvent the issue of lack of synchronization among
decoders at phone borders. In this work, we consider
only cross-decoder co-occurrences ofn-grams with the
samen. Though possible, mixed co-occurrences (uni-
grams with bigrams, bigrams with trigrams, etc.) are not
considered.

Let us consider an input sequence of feature vec-
tors X = (X1, . . . , XT ) and a choice ofk decoders
π = (d1, . . . , dk). Let Γ(d)

n (t) be the set ofn-grams
overlapping at framet in decoderd. Let w

(d)
n (t, i)



Figure 3: Approach 1 (3-decoder configuration): (1) phone co-occurrence labels are built by concatenating phone labels
on a frame-by-frame basis; (2) to handle transitional segments, a mode filter is iteratively applied (until convergence) on
a sliding window of 7 frames centered on the analyzed frame; and (3) repeated labels are reduced to a single label.

be one of suchn-grams andf (d)
n (t, i) the number of

frames it spans, withi ∈ [1, |Γ
(d)
n (t)|]. Note that

|Γ
(d)
n (t)| = n for all t except for a number of frames

at the borders ofX, where 1 ≤ |Γ
(d)
n (t)| < n.

Let cπn(t, ν) = (wd1

n (t, i1), . . . , w
dk
n (t, ik)) be a co-

occurrence ofk phonen-grams, for a choice ofn-grams
ν = (i1, . . . , ik), with 1 ≤ ij ≤ |Γ

(dj)
n (t)|, for j ∈ [1, k].

See Figure 4 and the related examples below to better un-
derstand these definitions.

In this approach, each decoderdj ∈ π makes its
own contribution to the count of a given co-occurrence
of phonen-grams at a given frame. The key concepts
are: (1) each phonen-gram is counted once for each de-
coder, so its count is distributed among all the frames it
spans; and (2) the contribution corresponding to a given
phonen-gram at a given frame for a given decoder is dis-
tributed among all the combinations of phonen-grams at
that frame for the remaining decoders. Taking into ac-
count these principles, we get the following expression:

count(cπn(t, ν), dj) =
1

f
(dj)
n (t, ij) ·

k
∏

l=1

l 6=j

|Γ
(dl)
n (t)|

(1)

The count forcπn(t, ν) is computed as the average
contribution over all the decoders:

count(cπn(t, ν)) =
1

k

k
∑

j=1

count(cπn(t, ν), dj) (2)

Finally, the count corresponding to a given co-
occurrence of phonen-gramsbπn = (v

(d1)
n , . . . , v

(dk)
n ) is

computed by adding the counts for all the frames in the
sequence where it appears:

count(bπn) =
T
∑

t=1

∑

∀ν

δ(bπn, c
π
n(t, ν)) · count(c

π
n(t, ν)) (3)

In practice, counts are computed in two passes. The
first pass computes and stores|Γ

(d)
n (t)| andf (d)

n (t, i) for
each decoderd and each framet. Starting from the pre-
viously stored values, the second pass accumulates the
counts of phonen-grams on a frame-by-frame basis, ap-
plying equation 2 for each combinationν of phonen-
grams appearing at framet.

In this work, we consider cross-decoder co-
occurrences of unigrams, bigrams and trigrams for each
combination ofk = 2 and k = 3 decoders (out of
N = 3). An example fork = 2 decoders (π = (1, 2))
including up to bigrams, is shown in Figure 4. Let us
consider the shaded frame (t = 15) in Figure 4. The sets
of n-grams appearing at that frame are:

Γ
(1)
1 (15) = {c} Γ

(1)
2 (15) = {ac, cb}

Γ
(2)
1 (15) = {y} Γ

(2)
2 (15) = {xy, yz}

and the number of frames they span:

f
(1)
1 (15, 1) = 8 f

(1)
2 (15, 1) = 17

f
(2)
1 (15, 1) = 13 f

(1)
2 (15, 2) = 15

f
(2)
2 (15, 1) = 19

f
(2)
2 (15, 2) = 18



Figure 4: Approach 2 (2-decoder configuration, up to bigrams): (1) eachn-gram is counted once for each decoder, so
its count is distributed among all the frames it spans; (2) the contribution corresponding to a givenn-gram at a given
frame for a given decoder is distributed among all the combinations ofn-grams appearing at that frame for the remaining
decoders; and (3) the count corresponding to a givenn-gram at a given frame is computed as the average contribution
over all decoders.

Starting from these values and according to equation
2, the counts of co-occurrences of phonen-grams are
computed as follows:

count(c_y) =
1

2
·

(

1

8 · 1
+

1

13 · 1

)

count(ac_xy) =
1

2
·

(

1

17 · 2
+

1

19 · 2

)

count(ac_yz) =
1

2
·

(

1

17 · 2
+

1

18 · 2

)

count(cb_xy) =
1

2
·

(

1

15 · 2
+

1

19 · 2

)

count(cb_yz) =
1

2
·

(

1

15 · 2
+

1

18 · 2

)

For estimating the SVMs corresponding to target lan-
guages, counts computed this way are accumulated for a
training database, SVM vectors being built with theM
highest counts (M = 100000 in this work). Note that
counts of co-occurrences of unigrams, bigrams and tri-
grams are put together in a single representation, which,
as for the approach 1, includes information from both
time (phonen-grams) and cross-stream (co-occurrence)
dimensions.

For scoring purposes, given an input sampleX, we
first obtain 1-best decodings and segmentations, then
count phonen-gram co-occurrences and use them to
build an M -dimensional vector. Finally, this vector
is scored with regard to SVMs. Note that counts of
co-occurrences of phonen-grams not appearing among
those with theM highest counts in the training database
are not used for scoring.

4. Experimental Setup

4.1. Training, development and test corpora

Training and development data were limited to those dis-
tributed by NIST to all LRE2007 participants: (1) the
Call-Friend Corpus; (2) the OHSU Corpus provided by
NIST for LRE05; and (3) the development corpus pro-
vided by NIST for LRE07. For development purposes, 10
conversations per language were randomly selected, the
remaining conversations being used for training. Each
development conversation was further split in segments
containing 30 seconds of speech. Evaluation was carried
out on the LRE07 evaluation corpus, specifically on the
30-second, closed-set condition (primary evaluation task
for the LRE07).

4.2. Evaluation measures

Most authors compare the performance of language
recognition systems either globally (but not numerically)
by means of Detection Error Tradeoff (DET) plots, or nu-
merically (but not globally, and not at the optimal opera-
tion point) by means of Equal Error Rates (EER). In this
work, systems will be also compared in terms of the so
calledCLLR [15], which is used as an alternative per-
formance measure in NIST evaluations. We internally
considerCLLR as the most relevant performance indica-
tor, for two reasons: (1)CLLR allows us to evaluate sys-
tem performance globally by means of a single numer-
ical value, which is somehow related to the area below
the DET curve, provided that scores can be interpreted as
log-likelihood ratios; and (2)CLLR does not depend on
application costs; instead, it depends on the calibration of
scores, an important feature of detection systems.



5. Results

Table 1 shows EER andCLLR performance in language
recognition experiments on the LRE2007 database using
the baseline phonotactic system and the cross-decoder
co-occurrence approaches proposed in this work. First
of all, note that we callsystemseither to those that, for a
given approach, are obtained by fusing subsystems work-
ing on subsets of one or two decoders, or to those working
on the whole set of three decoders. For the sake of com-
pleteness (to allow complete analyses), the performance
of subsystems is also shown in Table 1, and rows corre-
sponding to fused systems are shaded.

Table 1: Performance (EER andCLLR) of the base-
line phonotactic system and systems based on the cross-
decoder co-occurrence approaches proposed in this work.

EER CLLR

CZ 5,67% 0,8259
HU 5,10% 0,7434Baseline
RU 5,64% 0,8016
Fusion 2,69% 0,3981

CZ-HU 4,07% 0,5661
CZ-RU 4,53% 0,6526Approach 1 (k=2)
HU-RU 3,79% 0,5109
Fusion 2,27% 0,3393

Approach 1 (k=3) CZ-HU-RU 4,34% 0,6500

CZ-HU 3,32% 0,4506
CZ-RU 3,58% 0,5276Approach 2 (k=2)
HU-RU 2,75% 0,4140
Fusion 2,24% 0,3223

Approach 2 (k=3) CZ-HU-RU 3,90% 0,5724

Both approaches outperformed the baseline system
when using combinations ofk = 2 decoders. Approach
2 (2,24% EER,CLLR = 0,3223) was slightly better than
Approach 1 (2,27% EER,CLLR = 0,3393), the relative
improvement they provide being around 16% (with re-
gard to baseline 2,69% EER). Note that the difference
between Approach 1 and Approach 2 is relatively higher
in terms ofCLLR than in terms of EER. This reflects the
difference between their DET curves (see Figures 5 and
6), which is not so noticeable at the EER line.

Regarding subsystems, note that 2-decoder subsys-
tems performed consistently better than 1-decoder sub-
systems, being HU-RU the combination that yielded best
results. Moreover, 2-decoder subsystems based on Ap-
proach 2 performed remarkably better than 2-decoder
subsystems based on Approach 1. However, those dif-
ferences were not so noticeable after fusion. This may
indicate that subsystems based on Approach 2 were quite
redundant, or in other words, that they shared a great
amount of information. This would explain why fusion
did not recover for them so much information as for sub-
systems based on Approach 1.

A somehow unexpected result was that under 3-
decoder configurations both approaches showed a poor
performance compared to the baseline system (see Fig-
ures 5 and 6). We knew that robustness issues could arise
from the huge amount of co-occurrences that are theoret-
ically possible when dealing withk ≥ 3 decoders. In
Approach 1, the number of transitional segments may
explode as the number of decoders increases, thus pro-
ducing noisy sequences of phone co-occurrences. We
tried to avoid short segments by means of a mode filter,
but taking into account system performance (4,34% EER,
worse than those of CZ-HU and HU-RU subsystems), it
revealed insufficient. In Approach 2, a huge number of
cross-decoder phonen-gram combinations could appear,
specially in the case of 3-grams. To get reliable esti-
mations of counts of co-occurrences ofn-grams, a huge
database would be required. This was not the case, so
we limited the SVM vector to the 100000 highest counts.
This way, robustness issues may be overcome but a new
issue could arise: lack of coverage. Again, attending
to system performance (3,90% EER, worse than those
of 2-decoder subsystems for the Approach 2), we con-
clude thatn-gram co-occurrences cannot be suitably cov-
ered with the 100000 highest counts. A lesson learned
is that co-occurrence information can be effectively ex-
tracted in 2-decoder configurations (less sensitive to ro-
bustness and coverage issues) and recovered by means of
fusion. Despite this, we will keep on searching for an exit
to the combinatorial dead end intrinsic to cross-decoder
approaches, and future work will be partly devoted to that
task.

Table 2: Performance (EER andCLLR) of various fused
systems, involving the baseline system and systems based
on Approach 1 (A1) and Approach 2 (A2).

Fused Systems EER CLLR

A1 (k=2) + A1 (k=3) 2,21% 0,3388
A2 (k=2) + A2 (k=3) 2,28% 0,3280
Baseline + A1 (k=2) 1,92% 0,3054
Baseline + A2 (k=2) 1,88% 0,3064
Baseline + A1 (k=3) 2,38% 0,3472
Baseline + A2 (k=3) 2,15% 0,3582
Baseline + A1 (k=2) + A1 (k=3) 2,02% 0,3056
Baseline + A2 (k=2) + A2 (k=3) 1,90% 0,3158

Table 2 show the EER andCLLR performance of
various system fusions. Systems based on 3-decoder
co-occurrences did not significantly improve the perfor-
mance of systems based on 2-decoder co-occurrences.
This only means that they basically model the same
cross-decoder information and do not complement each
other well. This argument is supported by the fact that
when fused with the baseline phonotactic system, sys-
tems based on 3-decoder co-occurrences provided re-
markable improvements, leading to 2,38% EER (11,52%
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Figure 5: Pooled DET curves for the baseline phono-
tactic language recognition system, two systems based
on Approach 1 (n-grams of cross-decoder phone co-
occurrences, fork = 2 and k = 3 decoders) and the
fused system Baseline + Approach 1 (k = 2).

relative improvement) and 2,15% EER (20,07% relative
improvement) for approaches 1 and 2, respectively.

The best performance was achieved when fusing the
baseline system with systems based on 2-decoder co-
occurrences, which led to 1,92% EER (28,62% relative
improvement) and 1,88% EER (30,11% relative improve-
ment) for approaches 1 and 2, respectively (shaded rows
in Table 2). There is, however, an important difference
between approaches 1 and 2, which regards how cross-
stream and time dimensions are processed. The first ap-
proach concentrates on cross-decoder dimension and then
considers the time dimension, but phone sequence mod-
eling is somehow lost in the way. The second approach
runs the opposite route: it can be seen as a phonotac-
tic system (whose factory equipment includes phone se-
quence modeling) enhanced with additionaln-gram co-
occurrence modeling. This explains why the second ap-
proach provided the best performance among single sys-
tems (specially in terms ofCLLR), its DET curve being
close to that of the optimal fusion (see Figure 6). How-
ever, the baseline system provides phone sequence infor-
mation not present in the first approach, so they comple-
ment each other well, and explains why the second ap-
proach did not significantly outperform the first approach
when fused with the baseline system. Finally, adding sys-
tems based on 3-decoder co-occurrences did not improve
performance (two last rows in Table 2); instead, it led to
worse performance, which may be due either to a mis-
match between development and evaluation datasets, or
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Figure 6: Pooled DET curves for the baseline phonotac-
tic language recognition system, two systems based on
Approach 2 (cross-decoder co-occurrences of phonen-
grams, fork = 2 andk = 3 decoders) and the fused
system Baseline + Approach 2 (k = 2).

more probably to overfitting in the estimation of fusion
parameters. For an easier comparison of system perfor-
mances, EER andCLLR graphs are shown in Figure 7.

6. Conclusions and Future Work

Two approaches aiming to use cross-decoder phone co-
occurrence information (for combinations ofk = 2 and
k = 3 decoders) in SVM-based phonotactic language
recognition have been proposed and evaluated. The
proposed approaches rely on the assumption that cross-
decoder co-occurrence information is somehow specific
to each target language. The proposed approaches do not
involve hard computations; they represent just a means to
extract more information from existing decodings.

Systems based on 2-decoder co-occurrences outper-
formed the baseline system in language recognition ex-
periments on the LRE2007 database. The system based
on counts of 2-decoder co-occurrences of phonen-grams
yielded the best performance among all single systems,
with 2,24% EER (16,73% relative improvement with
regard to baseline 2,69% EER), andCLLR = 0,3223
(19,04% relative improvement with regard to baseline
CLLR = 0,3981). However, when using 3-decoder con-
figurations, both approaches showed a poor performance
compared to the baseline system. This may reveal ro-
bustness issues related to: (1) significant differences in
phone border detection (Approach 1) which make tran-
sitional segments to be dominant, thus producing noisy
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Figure 7: EER andCLLR graphs of some of the language
recognition systems evaluated in this work.

sequences of phone co-occurrences; and (2) a huge num-
ber of phonen-gram combinations (Approach 2), whose
statistics cannot be robustly estimated or that cannot be
suitably covered with the 100000 highest counts.

When considering fusions, combining the baseline
system with a system based on 2-decoder co-occurrences
provided best results, with no significant differences be-
tween approaches 1 and 2. The best fused system (Base-
line + Approach 2 (k = 2)) yielded 1,88% EER and
CLLR = 0,3064 (meaning 30% and 23% relative im-
provements, respectively).

We are currently working on various co-occurrence
selection schemes, with the aim to reduce the size of
SVM vectors while keeping or even improving perfor-
mance. Future work will focus on increasing the robust-
ness of phonotactic approaches that integrate time and
cross-stream dependencies, specially when usingk ≥ 3
decoders.
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