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Abstract

This paper presents a new system for the continuous speech recognition of Spanish,

integrating previous works in the fields of acoustic-phonetic decoding and language

modelling. Acoustic and language models -separately trained with speech and text samples,

respectively- are integrated into one single automaton, and their probabilities combined

according to a standard beam search procedure. Two key issues were to adequately adjust the

beam parameter and the weight affecting the language model probabilities. For the

implementation, a client-server arquitecture was selected, due to the desirable working scene

where one or more simple machines in the client side make the speech analysis task, and a

more powerful workstation in the server side looks for the best sentence hypotheses.

Preliminary experimentation gives promising results with around 90% word recognition

rates in a medium size word speech recognition task1.
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1. INTRODUCTION.

This paper describes a new Continous Speech Recognition (CSR) System for medium size

Spanish tasks integrated into a client/server architecture. The main original features of the system

are:

- Context Dependent Units obtained by applying decision trees for Spanish recognition

tasks.

- A syntactic approach of the well-known n-gram models, the K-TLSS Language Models,

fully integrated in the recognition system.

- A linear organization of the lexicon fully compatible with the search strategy.

- A client/server architecture where the main search network is implemented as server and

the acoustic front-end works independently in one or more clients.

                                                
1 This work has been partially supported by the Spanish CICYT, under project TIC95-0884-C04-03.



Other features of the system include some state-of-the-art speech recognition technologies:

robust speech signal analysis, HMM acoustic models, beam-search and (optionally) fast

phoneme look ahead algorithms.

The CSR System was evaluated over a task oriented speech corpus representing a set of

queries to a Spanish geography database. This is a specific task designed to test integrated

systems (involving acoustic, syntactic and semantic models) in automatic speech understanding.

The paper is organized as follows: Section 2 summarizes the speech analysis procedure and

the acoustic models. In Section 3 language modelling and search strategy are outlined. Section 4

describes the client/server system architecture. Finally, some preliminary results for the

evaluation of the CSR system are presented in Section 5.

2. ACOUSTIC-PHONETIC MODELLING.

Speech analysis -as suggested by [1]- is made by following conventions of the Entropic

Hidden Markov Modeling Toolkit (HTK) [2], with some minor changes. Speech -acquired

typically through a headset condenser microphone- is sampled at 16 kHz, each sample having 16

bit precision. Speech samples are grouped into successive frames and passed through a

Hamming window. Frame length is 25 ms and inter-frame distance 10 ms. A filter bank formed

by 24 triangular filters with increasing widths according to mel-frequency scale, is applied to a

512-point FFT, producing 24 spectral weighted mean values. A discrete cosine transform applied

to these coefficients decorrelates the spectral envelope from other characteristics not relevant for

recognition, producing 12 mel-frequency cepstral coefficients (MFCC). Cepstral mean

normalization and liftering are then applied to compensate for channel distortion and speaker

characteristics. The normalized logarithm of the energy is also computed. Finally, dynamic

characteristics (first and second derivatives) are added to the MFCC and log-energy parameters,

obtaining a 39-component acoustic observation vector.

As usual when dealing with medium to large size vocabularies, sublexical units were used as

the basic speech units. Three different sets were defined. The first and simpler one contained 24

phone-like units, including a single model for silence. The second one was a mixture of 103

trainable (e.g. with enough training samples) monophones, diphones and triphones, as described

in [3]. The well known technique of decision tree clustering [4] was applied to obtain a third

optimal set of 101 trainable, discriminative and generalized context dependent units. An

additional set of border units was specifically trained to generate lexical baseforms, covering all

possible intraword contexts and being context independent to the outside. We are currently

working in generating a more general set of inter and intraword context dependent units, and a

first approach was made to evaluate their contribution to the recognition process (see Section 5).

To deal with multiple codebook observations, as was the case in our baseline system, a simple



and not very expensive discriminative function, combining probabilities from all the codebooks,

was used. The set of decision tree based context dependent units gave the best results in

acoustic-phonetic decoding experiments and also when building word models for a more reliable

test, as will be shown in Section 5.

Discrete Left-to-Right Hidden Markov Models with 3 looped states and 4 discrete

observation distributions per state, were used as acoustic models. Emision and transition

probabilities were estimated using both the Baum-Welch and Viterbi procedures, applying the

Maximum Likelihood criterion.

To deal with discrete acoustic models, a standard Vector Quantization procedure was applied,

obtaining four different codebooks, each containing 256 centroids, corresponding to MFCCs,

first derivatives of MFCCs, second derivatives of MFCCs and a 3-component vector formed by

log-energy, first and second derivatives of log-energy. During recognition, each parameter

subvector is assigned the nearest centroid index and a four index tag is passed as acoustic

observation to the search automaton.

3. LANGUAGE MODELLING AND SEARCH STRATEGY.

A syntactic approach of the well known n-grams models, the K-Testable Languages in the

Strict Sense (K-TLSS) was used. The use of K-TLSS regular grammars allowed to obtain a

deterministic, and hence unambigous, Stochastic Finite State Automaton (SFSA) integrating a

number of K-TLSS models in a self-contained model [5]. Then a syntactic back-off smoothing

technique was applied to the SFSA to consider unseen events [6]. This formulation strongly

reduced the number of parameters to be handled and led to a very compact representation of the

model parameters learned at training time. Thus the Smoothed SFSA was efficiently allocated in

a simple array of an adequate size.

Although words have been used as basic units in our baseline system, some other alternative

lexical units, statistically derived from the training text, have been studied, yielding sifgnificative

improvements in terms of model complexity and performance, and could replace words in a later

implementation.

Lexical baseforms are linearly represented. Each word is transcribed as the concatenation of

sublexical units, taking into account only intraword contexts. Word nodes are expanded with the

corresponding concatenation of previously trained acoustic models, and one single automaton

results with both acoustic and syntactic probabilities.

The time-synchronous Viterbi decoding algorithm is used at parsing time: a simple search

function through the array representing the Language Model allows to directly obtain the next

state of the SFSA needed at each decoding time. After some preliminary experimentation, a kind



of balance between acoustic and syntactic probabilities was found necessary in the search

automaton. A weight α affecting the Language Model probabilities was heuristically optimized.

Then a beam threshold is established and (optionally) a fast phoneme look ahead algorithm is

included to reduce the average size of the search network [7].

4. SYSTEM ARQUITECTURE.

The system design is based on a distributed, client-server arquitecture. The server is the main

program, as it includes the search module. On the other hand, although the more apparent part of

the client application is the graphical user interface, it also acquires the audio signal and does the

preprocessing (i.e. the edge detection) and the acoustic feature extraction. By means of the

graphical interface, which is based on Tcl/Tk [8], the user controls the whole system and gets

feedback in the form of detailed messages. The client and server programs may run on different

computers attached to a network. Both are highly parallelized through POSIX threads: for

example, GUI, audio acquisition and feature extraction are three separate threads of the client

program. Figure 1 outlines the main characteristics of the system arquitecture.

This distributed, parallelized arquitecture makes possible to get the maximum performance

from modern computer hardware such as networked multiprocessor systems. Clearly, the client
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application must run on a computer provided with a graphic display and audio hardware; the

CPU power is not important. However, the server application should run on a computer with a

faster CPU or more CPUs; by contrast, graphics and audio capabilities are not needed in this

case. Obviously, both client and server applications may also run on the same computer.

While the system is running, the audio signal is being acquired continuously but not

processed when signal energy is low (silence condition). Whenever a spoken sentence (or some

long emphatic sound) is detected, audio data are given to the acoustic feature extraction module.

Then a vector composed of the signal features is sent to the server, which adds it to a queue.

Another server thread is continuously processing this queue, doing the main job. The server is

also provided with an optional VQ module working only when discrete acoustic models are

especified, as in our baseline system. Control and configuration messages may be sent at any

time from the client to the server using an independent bidirectional communication channel. The

same channel may be used by the server for sending messages to the client, which in turn

displays them to the user.

5. EXPERIMENTAL EVALUATION.

All the parts of the system were carefully tested and optimized before integrating them. From

the audio acquisition module to the search module, separate evaluations were made. Here we

present only two of them, reflecting our current research interests: the selection of an adequate

set of sublexical units for acoustic modelling, and the integration of acoustic and language

models into one single search automaton.

5.1. Evaluating sublexical units.

As mentioned above, three different sets of sublexical units were tested: 24 context

independent phone-like units, a mixture of 103 monophones, diphones and triphones, and 101

decision tree based generalized context dependent units. An acoustic-phonetic decoding task was

used as benchmark, having a balanced phonetic database both for training and testing purposes.

The training corpus was composed of 1529 sentences, involving around 60000 phones. A

speaker independent test was applied, containing 700 sentences. Discrete HMMs with 4

codebooks were used as acoustic models. No phonological model was used in these

experiments. Table I shows phone recognition rates. Context independent phone-like units gave

significative lower rates (around two points) than the two other sets of context dependent units,

which in turn showed similar performances.

However, a more reliable test seems necessary to decide which set of units is more suitable,

by building lexical baseforms and obtaining word recognition rates. Two different procedures



have been used to obtain lexical baseforms, both considering words as isolated. In the first one,

called TR1, border units are selected to be context independent both sides. In the second one,

called TR2, border units are selected to be context dependent in the word side and context

independent in the outside. Another transcription procedure, called TR3, was used to test the

contribution of modelling interword contexts to speech recognition. TR3 takes into account the

interword contexts appearing in the test database to obtain lexical baseforms of words. Table II

shows word recognition rates using these transcription procedures, in a speech recognition task

with no language model. Only the baseforms of the 203 words found in the test database were

used to run the alignment procedure, so a closed test was carried out. Word recognition rates

show that TR2 works better than TR1 -as may be expected. However, TR3 gave the best

performance, showing the importance of modelling interword contexts. Finally, note that DT-

based context dependent units outperform the two other sets of units.

Table I. Phone recognition rates for a phonetic-decoding task in
Spanish, using three different sets of sublexical units.

Type of unit # units % REC

CI phone-like 24 63.97

Mixture (Mph, Dph, Tph) 103 65.90

DT-based 101 66.44

Table II . Word recognition rates for a speech recognition task in
Spanish, using three different sets of sublexical units and three
different transcription procedures.

% Word Recognition

Type of unit TR1 TR2 TR3

CI phone-like 49.83 -

Mixture (Mph, Dph, Tph) - 51.16 56.73

DT-based 52.86 53.26 58.01

5.2. Evaluating the search procedure.

Not only the parameter α weighting syntactic probabilities over acoustic probabilities must

be optimized, but also the beam parameter. Actually, both should be optimized jointly, but we

first heuristically found an optimum a and then an optimum beam. The beam is a key issue to

reach real-time operation, because a balance must be found between system accuracy and

computation time.

At any time, each possible transition from each active node in the search network has an

acoustic probability and possibly also a syntactic probability, which are multiplied by the



accumulated probability at the departure node, and assigned as accumulated probability to the

arrival node. To obtain the set of active nodes at that time, the beam parameter must be applied to

discard all nodes whose accumulated probability falls below certain threshold, thus drastically

reducing the size of the search network. This threshold is usually obtained by multiplying the

beam parameter by the maximum accumulated probability at that time.

Once again discrete HMMs with 4 codebooks were used as acoustic models. Context

independent phone-like units were used as sublexical units, and lexical baseforms were

generated by applying TR1. K-TLSS models were used for Language Modelling, trained with a

task-oriented text containing 8262 sentences, for several values of k. The task, a set of queries to

a Spanish geography database, had a vocabulary of 1213 words. For testing purposes, an

independent but fully covered text containing 600 sentences was used. Table III shows system

performance for values of k=2,3,4, beam=0.67, 0.55, 0.45, and fixed α =6.

Table III.  System performance for different values of k and beam, and fixed α=6.
Significative measures are showed: average number of active nodes (#AN average),
average processing time per frame (PTF average, in milliseconds), word recognition
rate (%W) and sentence recognition rate (%S).

k beam #AN average PTF average (ms) %W %S

0.67 40.13 3.80 68.58 29.17

2 0.55 218.21 11.75 84.05 41.67

0.45 858.51 33.42 85.19 44.17

0.67 32.24 3.30 70.48 36.33

3 0.55 179.01 10.96 89.15 56.00

0.45 800.52 36.67 90.35 57.50

0.67 31.50 3.38 71.36 45.00

4 0.55 177.99 11.24 89.78 59.00

0.45 808.30 38.19 91.42 61.50

Computational resources required by the system (processing time and memory, i. e. the

number of active nodes) reduce drastically as the beam narrows, while system accuracy remains

quite good, especially for k=4. Note that only the more constrained search (with beam=0.67)

fullfils the condition of real-time operation (i.e. average processing time per frame less than 10

milliseconds).

6. CONCLUDING REMARKS.

In this paper a new CSR System for medium size Spanish tasks was presented. State-of-the-

art speech recognition technologies, including Discrete HMMs and K-TLSS models, were

integrated into a client/server architecture, where the main search module -a time-synchronous



Viterbi alignment provided with beam search and fast phoneme look ahead algorithms- was

implemented as a server, and the acoustic front-end was part of the client application.

Future work includes programming a client application for PCs, expanding the currently

available client, designed for Silicon Graphics and Sun workstations, to more common

platforms; the use of decision tree based context dependent sublexical units, instead of context

independent phone-like units, to form lexical baseforms incorporating interword context

modelling; the use of alternative lexical units replacing words; the use of more accurate acoustic

models, and finally improving the search module to fully acomplish real-time operation with

good system accuracy.

This work is part of a greater CSR project jointly developed with three other spanish

universities: Universidad Politécnica de Valencia, Universidad Politécnica de Cataluña and

Universidad de Zaragoza. Here we would like to thank all the help and advise obtained from

them.
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