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Abstract

This paperpresents a new system for the continuspsechrecognition of Spanish,
integrating previous works in théields of acoustic-phoneticdecoding andlanguage
modelling. Acoustic and language models -separdtaigedwith speechandtext samples,
respectively-are integratednto one single automatorand their probabilitiescombined
according to a standard beam search procedure. Two key issues \adegjuateladjust the
beam parameterand the weight affecting the languagemodel probabilities. For the
implementation, a client-server arquitecture was selected, duededinableworking scene
where one or more simple machines in the client side maksptechanalysis taskand a
more powerful workstation in theerver sidelooks for the bestsentencehypotheses.
Preliminary experimentation gives promising results watbund90% word recognition

rates in a medium size word speech recognitionttask
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1. INTRODUCTION.

This paper describesreew Continous Speech RecognitigBSR) System fomedium size
Spanish tasks integrated into a client/server architecture. The main original features of the system
are:

- Context Dependentinits obtained by applying decision trefs Spanishrecognition
tasks.

- A syntactic approach of the well-known n-gramodels, thek-TLSS Language Models,
fully integrated in the recognition system.

- A linear organization of the lexicon fully compatible with the search strategy.

- A client/server architecture where the ms@arch network isnplemented as server and
the acoustic front-end works independently in one or more clients.
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Other features athe systeminclude some state-of-the-art speech recognition technologies:
robust speech signanalysis, HMM acoustic models, beam-searand (optionally) fast
phoneme look ahead algorithms.

The CSR Systenwas evaluated over task oriented speeatorpus representing a set of
queries to a Spanish geograpiigtabase. This is a specific task designed to itésgrated
systems (involving acoustic, syntactic and semantic models) in automatic speech understanding.

The paper is organized as follows: Section 2 summarizes the spesghis procedure and
the acoustic models. In Section 3 language modelling and search strategy are outlined. Section 4
describesthe client/serversystem architecture. Finally,some preliminaryresults for the
evaluation of the CSR system are presented in Section 5.

2. ACOUSTIC-PHONETIC MODELLING.

Speech analysis -as suggested by [1Jm&le by following conventions of the Entropic
Hidden Markov ModelingToolkit (HTK) [2], with some minor changes. Speech -acquired
typically through a headset condenser microphone- is sampled at 16 kHz, each sample having 16
bit precision. Speech samples ageouped into successive frames apassed through a
Hamming window. Frame length is 25 ms and inter-frame distanecesl@\filter bank formed
by 24 triangular filtersvith increasing widths according to mel-frequerscgle, isapplied to a
512-point FFT, producing 24 spectral weighted mean values. A discrete cosine transform applied
to these coefficients decorrelates the spectral envelope from other characteristts/awot for
recognition, producing 12 mel-frequency cepstral coefficier(fdFCC). Cepstral mean
normalization and liftering are then applied to compeng&atehannel distortion and speaker
characteristics. The normalized logarithm of the energglse computedFinally, dynamic
characteristics (first and second derivatives) are added tdRI@C and log-energyarameters,
obtaining a 39-component acoustic observation vector.

As usual when dealing with medium to large size vocabularies, subleritaWvereused as
the basic speech units. Three different sets were defined. The first and simpler one contained 24
phone-like units, including a single model silence. Thesecond onevas a mixture of 103
trainable (e.g. with enough training samples) monophones, diphones and triphones, as described
in [3]. Thewell known technique of decision tree clusteridd was applied to obtain a third
optimal set of 101trainable, discriminativeand generalized context dependemtits. An
additional set of border units was specifically trained to genératal baseforms, covering all
possibleintraword contexts and being context independent tootitside. Weare currently
working in generating a more general set of inter and intraword context dependent units, and a
first approach was made to evaluate their contribution to the recogmitoass (se8ection 5).
To deal with multiplecodebook observations, a&s the case iour baseline system, a simple



and not very expensive discriminative function, combining probabifites all the codebooks,
was used.The set of decisioriree basedcontext dependent unitgave the best results in
acoustic-phonetic decoding experiments and also when building word models for relrable
test, as will be shown in Section 5.

Discrete Left-to-Right Hidden MarkowWodels with 3 looped states and 4 discrete
observation distributions pestate, wereused asacoustic models. Emision and transition
probabilitieswere estimatedising boththe Baum-Welch an&iterbi procedures, applying the
Maximum Likelihood criterion.

To deal with discrete acoustic models, a standard Vector Quantization procedaggpheas
obtainingfour different codebooks, each containig§6 centroids,corresponding to MFCCs,
first derivatives of MFCCs, second derivativesMiFCCs and a 3-componeniectorformed by
log-energy, first andsecondderivatives oflog-energy. Duringrecognition, each parameter
subvector isassignedthe nearest centroid index andaar index tag ispassed ascoustic
observation to the search automaton.

3. LANGUAGE MODELLING AND SEARCH STRATEGY.

A syntactic approach of theell known n-gramsnodels, the K-Testableanguages in the
Strict Sense (K-TLSSwasused.The use of K-TLSSregular grammarsllowed to obtain a
deterministicand hence unambigous, Stochastic Finite State Auton{&©68A) integrating a
number of K-TLSS models in a self-containeddel[5]. Then a syntactic back-off smoothing
technique was applied to tf&~SA to consider unseavents[6]. This formulation strongly
reduced the number of parameters to be handled and legety eompactepresentation of the
model parameters learned at training time. Thus the Smoothed SFSA was efficiently allocated in
a simple array of an adequate size.

Although words have been used as basic units irbasgline system, some otlaternative
lexical units, statistically derived from the trainitext, havebeen studied, yielding sifgnificative
improvements in terms of model complexity and performance, and could replace woldiein a
implementation.

Lexical baseforms are linearly represented. Each word is transcribed as the concatenation of
sublexical units, taking into account only intraword contexts. Word nodes are expetidéte
correspondingoncatenation of previously trained acoustic modatsl one single automaton
results with both acoustic and syntactic probabilities.

The time-synchronou¥iterbi decoding algorithm isised at parsingme: asimple search
function throughthe array representing the Languadedel allows to directly obtain the next
state of the SFSA needed at each decoding time. After some preliminary experimenkatidn, a



of balance between acousemd syntactic probabilities wadsund necessary ithe search
automaton. A weighat affecting the Languagklodel probabilitiesvas heuristically optimized.
Then a beanthreshold is established and (optionally) a fast phoneme look ahead algorithm is
included to reduce the average size of the search network [7].

SERVER

Linear lexicon

!

Thread 1 configuration and control Thread 1 Thread 3

interaction

Graphical Interface g
messages
o Search control

configuration Manager SEARCH
results
messages
Thread 2
Signal " .
> Viterbi
User  Skheech o acquisition terb
and control = h
. eam-searc
preprocessing
Thread 2 F t
sentence acquired as
queue of Look-Ahead
sentences
Thread 3
Feature acoustic
extraction acoustic features > Vv Q (=08
M Acoustic Models Language Model
(Discrete HMMs) (K-TLSS)

Figure 1. System arquitecture showing both the client and server sides communicating through a local nefwork.

4. SYSTEM ARQUITECTURE.

The system design is based on a distributed, client-server arquitecture. The serverais the
program, as it includes the search module. On the other hand, although the more apparent part of
the client application is the graphical user interface, it also acquires the audio sigdakarite
preprocessing (i.ehe edge detection) and the acoustic feature extraction. By means of the
graphical interface, which isased orircl/Tk [8], theuser controlghe wholesystem and gets
feedback in the form of detailed messages. The client and geoggamsmay run ondifferent
computersattached to a networlBoth are highly parallelizedthrough POSIXthreads: for
example,GUI, audio acquisition and feature extractire three separate threads of thent
program. Figure 1 outlines the main characteristics of the system arquitecture.

This distributedparallelized arquitecture makpsssible toget the maximum performance
from modern computer hardwasech ametworked multiprocessaystemsClearly, the client



application mustun on acomputer providedvith a graphic display and audio hardware; the
CPU power is noimportant.However,the server applicatioshould run on @omputerwith a
fasterCPU ormore CPUs; bycontrastgraphics and audioapabilities are not needed in this
case. Obviously, both client and server applications may also run on the same computer.

While the system is runningthe audio signal is being acquireabntinuously but not
processed when signal energy is low (silence condition). Whenever a sauitencgor some
long emphatic sound) is detected, audio datgyaen to theacoustic feature extraction module.
Then avectorcomposed othe signal features sent tothe server, whictadds it to aqueue.
Another server thread ontinuously processing thegieuedoing the mainjob. The server is
also providedwith an optional VQ module working onlyvhen discrete acoustimodels are
especified, as iour baseline system. Control and configuratinassagesnay besent at any
time from the client to the server using an independent bidirectional communication channel. The
same channel may hesed bythe serverfor sending messages the client, which inturn
displays them to the user.

S. EXPERIMENTAL EVALUATION.

All the parts of the system were carefully tested and optimized before integrating-tbem.
the audio acquisition module to the seamsbdule,separate evaluationsere made. Here we
present onlyiwo of them,reflectingour current research interests: the selection of an adequate
set of sublexical unitfor acoustic modellingand the integration of acoustic and language
models into one single search automaton.

5.1. Evaluating sublexical units.

As mentionedabove, three differentsets of sublexical unitswere tested: 24 context
independent phone-like units, a mixturel®3 monophones, diphones anghones, and 101
decision tree based generalized context dependent units. An acoustic-phonetic decoding task was
used as benchmark, having a balanced phonetic databaderbtoéiining and testingurposes.

The trainingcorpus was composed of 152%entencesinvolving around 60000 phones. A
speaker independent test wapplied, containing700 sentences. DiscretdMMs with 4
codebookswere used asacoustic models. No phonological model wased in these
experiments. Table | shows phone recognition rates. Context independent phone-ligavenits
significative lower rates (arourtd/o points) tharthe twoothersets ofcontext dependent units,
which in turn showed similar performances.

However, a more reliable testems necessary decide whichset of units is morsuitable,
by building lexical baseforms and obtainingord recognition ratesTwo different procedures



have been used to obtain lexical baseforms, both considering words as isolttedirdhone,

called TR1,border unitsare selected to be context independmih sides. Inthe secondone,

called TR2,border unitsare selected to be context dependent in the wad andcontext
independent in theutside. Another transcription proceducgjled TR3, wasused totest the
contribution of modelling interword contexts to speech recognition. TR3 takes into account the
interword contexts appearing in the test database to dbxdal baseforms of wordslable I

shows word recognition rates using these transcription procedures, in a speech recognition task
with no language modeDnly the baseforms othe 203 words found inthe test databaseere

used to rurthe alignment procedure, so a closed test was camtiedNVord recognition rates
show that TR2 works better than TR1-as may be expecteddowever, TR3 gave the best
performance, showing the importance of modelling interword contéxislly, note that DT-
based context dependent units outperform the two other sets of units.

Table |. Phone recognition rates for ghonetic-decodingask in
Spanish, using three different sets of sublexical units.

Type of unit # units % REC
Cl phone-like 24 63.97
Mixture (Mph, Dph, Tph) 103 65.90
DT-based 101 66.44
Table II. Word recognition rates for @peechrecognition task in

Spanish, usingthree different sets of sublexical unitsand three
different transcription procedures.

% Word Recognition

Type of unit TR1 TR2 TR3
Cl phone-like 49.83 -
Mixture (Mph, Dph, Tph) - 51.16 56.73
DT-based 52.86  53.26 58.01

5.2. Evaluating the search procedure.

Not only the parametent weighting syntactic probabilitiesver acoustic probabilities must
be optimizedput alsothe beam parametekctually, both should beoptimized jointly, but we
first heuristicallyfound anoptimum a and then an optimum beam. Beam is &ey issue to
reach real-time operation, because a balanost be foundbetweensystem accuracy and
computation time.

At any time, eachpossible transition froneachactive node inthe search networkas an
acoustic probability angbossibly also asyntactic probability, which are multiplied by the



accumulated probability at the departure naohel assigned aaccumulated probability to the

arrival node. To obtain the set of active nodes at that time, the beam parameter must be applied to
discardall nodeswhose accumulated probability falielow certain thresholdhus drastically
reducing the size of the search netwdrkis threshold is usually obtained by multiplying the

beam parameter by the maximum accumulated probability at that time.

Once again discretelMMs with 4 codebookswere used asacoustic models. Context
independent phone-like unitwere used assublexical units, andexical baseformswere
generated by applying TR1. K-TLSS models were usedldoguage Modelling, trainedith a
task-oriented text containing 8262 sentences, for several values of k. The task, a set of queries to
a Spanish geographgatabasehad a vocabulary o213 words. Fortesting purposes, an
independent but fullgovered text containing00 sentencewasused.Tablelll shows system
performance for values of k=2,3,4, beam=0.67, 0.55, 0.45, ancofixéd

Table Ill. System performance fatifferentvalues of kandbeam,and fixeda=6.
Significative measuresare showed:averagenumber of activenodes (#ANaverage),
average processing time per frafRI'F average, inmilliseconds),word recognition
rate (%W) and sentence recognition rate (%S).

k beam #AN average PTF average (ms) %W %S
0.67 40.13 3.80 68.58 29.17
2 0.55 218.21 11.75 84.05 41.67
0.45 858.51 33.42 85.19 44.17
0.67 32.24 3.30 70.48 36.33
3 0.55 179.01 10.96 89.15 56.00
0.45 800.52 36.67 90.35 57.50
0.67 31.50 3.38 71.36 45.00
4 0.55 177.99 11.24 89.78 59.00
0.45 808.30 38.19 91.42 61.50

Computationalresources required bihe system (processingme and memory, i. e. the
number of active nodes) reduce drastically as the beam nawbikssystemaccuracy remains
quite good, especiallfor k=4. Notethat only the more constrained sear@hith beam=0.67)
fullfils the condition of real-time operation (i.averageprocessingime per framelessthan 10
milliseconds).

6. CONCLUDING REMARKS.

In this paper a new CSR System for medium size Spanishwaskpresented. State-of-the-
art speech recognition technologies, including Disck#t#Ms and K-TLSS models, were
integrated into a client/server architecture, where the seanch module -a time-synchronous



Viterbi alignment providedvith beamsearch and fast phoneme look ahead algorithms- was
implemented as a server, and the acoustic front-end was part of the client application.

Future work includes programmingcéent applicationfor PCs, expandinghe currently
available client,designed forSilicon Graphics andSun workstations, to more common
platforms; theuse of decisionree basedcontext dependent sublexical units, instead of context
independent phone-like units, tmrm lexical baseforms incorporatingnterword context
modelling; the use of alternative lexical units replacing wordsu#igeofmore accurate acoustic
models,and finally improving the search module to fully acomplishl-time operatiorwith
good system accuracy.

This work is part of a greate€SR project jointly developedwith three otherspanish
universities: Universidad Politécnica déalencia, Universidad Politécnica de Catalufia and
Universidad de Zaragoza. Here weuld like to thankall the help andadvise obtainedrom
them.
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