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Abstract—Best language recognition performance is commonly
obtained by fusing the scores of several heterogeneous systems.
Regardless the fusion approach, it is assumed that different sys-
tems may contribute complementary information, either because
they are developed on different datasets, or because they use
different features or different modeling approaches. Most authors
apply fusion as a final resource for improving performance
based on an existing set of systems. Though relative performance
gains decrease as larger sets of systems are considered, best
performance is usually attained by fusing all the available
systems, which may lead to high computational costs. In this
paper, we aim to discover which technologies combine the
best through fusion and to analyse the factors (data, features,
modeling methodologies, etc.) that may explain such a good
performance. Results are presented and discussed for a number
of systems provided by the participating sites and the organizing
team of the Albayzin 2010 Language Recognition Evaluation.
We hope the conclusions of this work help research groups make
better decisions in developing language recognition technology.

I. INTRODUCTION

Best performance in spoken language recognition is com-

monly attained by combining the scores of different classifiers.

Using complementary language cues (spectral, prosodic and

phonotactic features) for the development of different systems

makes it possible to effectively exploit such complementarity

at the score level through discriminative fusion. However, this

is just theory. In practice, one cannot predict which system

combinations will provide best performance. In fact, the sets

of speech signals used to estimate models and calibration

parameters may be affecting the scores as much as the features

themselves. On the other hand, if fusion parameters are esti-

mated on a suitable (i.e. large enough and representative) set

of data, it is expected that the fused system will perform better

than the best single system. This explains why, regardless the

features and the modeling approaches, the main system is

almost always built by fusing all the available systems (not

just those whose features are expected to be complementary),

in an attempt to improve performance as much as possible. The

only issue with this put it all together and shake approach, is

that one ends up building a large number of systems, some of

them very close to each other or even identical (differing only

in the data they are trained on), expecting that fusion will make

the work for us and leaving further analyses aside. Probably,

we may have attained the same performance by developing

and fusing a reduced (but carefully chosen) set of systems.

For instance, previous work has shown that systems based on

prosodic features, though yielding higher error rates than sys-

tems based on spectral or phonotactic features, can be excellent

candidates for fusion [1]. In any case, important lessons can be

learnt from studying how much each factor (features, training

data, modeling approaches) affects fusion performance and

which combinations provide best performance.

This paper aims to enrich the discussion on these issues,

by evaluating the performance of many different fusions of

heterogeneous subsystems (heterogeneous in terms of features,

modeling approaches and/or training data) for a fixed lan-

guage recognition task, defined on the core condition (closed-

set, clean-speech, 30-second segments) of the Albayzin 2010

Language Recognition Evaluation [2]. Sites participating in

the evaluation, as well as the organizing team, applied var-

ious subsystems to score segments in the development and

evaluation datasets. Calibration and fusion were performed

by means of FoCal [3], a well-known open-source package

that is commonly applied for these tasks, for all the possible

combinations of k subsystems (k ∈ [1, 5]). Though the

conclusions drawn from this work might be somehow task-

dependent, we expect that they provide guidelines (and time

savings) for future developments.

The rest of the paper is organized as follows. Section II sum-

marizes the most relevant information about the evaluation.
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Section III describes the post-evaluation activity proposed to

participants, including details about the calibration and fusion

approaches. The main features of the subsystems submitted

by each site are given in Section IV. Language recognition

performance for the best fusions of k subsystems (k ∈ [1, 5])
is presented and discussed in Section V. Finally, conclusions

are given in Section VI.

II. THE ALBAYZIN 2010 LANGUAGE RECOGNITION

EVALUATION

The Albayzin 2010 Language Recognition Evaluation (Al-

bayzin 2010 LRE) was the second effort made by the Span-

ish/Portuguese speech and language processing communities

for benchmarking language recognition technology, after a

first edition in 2008 [4]. The task, test conditions and per-

formance measures were defined in almost the same terms

as for the last NIST LRE [5][6]. Six target languages were

considered (Spanish, Catalan, Basque, Galician, Portuguese

and English) and speech signals were extracted from multi-

speaker TV broadcast recordings. Note that a test segment

could contain speech from various speakers. This is a relevant

difference with regard to NIST evaluations, whose data were

extracted from telephone-channel two-speaker conversations,

test segments containing speech from a single speaker.

Four different test conditions, depending on the set of

non-target languages (closed-set vs. open-set) and the back-

ground conditions (clean vs. noisy speech), and three nominal

segment durations (30, 10 and 3 seconds) were considered,

leading to 12 different tracks. A core mandatory condition

was defined: closed-set verification of 30-second segments

containing clean-speech, on which the work presented in this

paper focuses.

A. Performance measures

Language recognition performance is commonly computed

by presenting the system a set of trials (each involving a

speech segment and a target language) and comparing system

decisions with the right ones (stored in a keyfile). For each

trial, the system must output a hard decision (yes/no) about

whether or not the target language is spoken in the segment,

and a score (a real number) indicating how likely is for the

system that the target language is spoken in the segment, the

higher the score the greater the confidence that the segment

contains the target language.

Performance was primarily measured by means of the

average cost across target languages, Cavg , defined in the same

way as for NIST evaluations. In fact, the NIST LRE scoring

script was used, with minor changes needed to match the task

and to add the identifiers of the 6 target languages considered

in this evaluation (see [2] for details). The cost model consisted

of three application parameters: Cmiss, Cfa and Ptarget. The

same values used in NIST 2007 and 2009 LRE were applied:

Cmiss = Cfa = 1
Ptarget = 0.5

B. Data

Participants were allowed to use any available data and sub-

systems to build their systems. However, for better matching

the acoustic conditions of test data, the organization provided

two additional datasets, train and development, designed for

training language models and tuning system parameters, re-

spectively. Speech signals were extracted from TV broadcast

recordings. The TV shows posted to train, development and

test sets were forced to be disjoint, as an attempt to guarantee

speaker independence. Audio signals were stored in WAV files

(PCM, 16 kHz, single channel, 16 bits/sample).

The train dataset consisted of more than 10 hours of clean

speech per target language (in some cases, almost 12 hours)

and more than 2 hours (in some cases, more than 3 hours)

of noisy/overlapped speech per target language, amounting

to more than 82 hours (roughly, 80% corresponding to clean

speech and 20% to noisy speech). The development and test

datasets, each amounting to more than 21 hours (roughly,

70% corresponding to clean speech and 30% to noisy speech),

contained speech segments with nominal durations of 30, 10

and 3 seconds, with at least 150 speech segments per target

language and nominal duration.

C. Participation

Four teams submitted their systems to the evaluation:

• GTC-VIVOLAB from the University of Zaragoza

(Spain),

• L2F (Spoken Language Systems Lab) from INESC-ID

Lisboa (Portugal),

• GTM from the University of Vigo (Spain), and

• UEF-NTNU from the University of Eastern Finland

(UEF) at Joensuu (Finland) and the Norwegian Univer-

sity of Science and Technology (NTNU) at Trondheim

(Norway).

A wiki was activated to improve communication and collab-

oration between sites and the organizing team. A more detailed

description of the evaluation conditions (rules, file formats,

schedule, etc.) and a brief discussion of the results can be

found in [2].

III. THE POST-EVALUATION (FUSION) ACTIVITY

Just after releasing evaluation results, in the interim before

the evaluation workshop, the fusion activity was proposed to

participants, the information being provided through the wiki,

which was also used to upload the required scores and to pub-

lish the results. Somehow inspired by [7], the post-evaluation

activity aimed to analyse the fusion of heterogeneous systems

for a language recognition task, trying to find performance

dependence on different factors (features, train/development

data, modeling approach, etc.). In other words, our aim was

to provide evidence (if any) about which factors affected

fusion performance in language recognition, to help future

developments. A well-established fusion approach was chosen,

based on the FoCal Multiclass toolkit [3], developed by Niko

Brümmer and widely used in the research community for the
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calibration and fusion of speaker and language recognition

systems.

Submissions to the Albayzin 2010 LRE were, in most cases,

the result of fusing various subsystems. For this study, we

asked each site for the scores (preferably log-likelihoods)

yielded by subsystems on two fixed datasets: (1) the sub-

set of the development dataset corresponding to closed-set

trials involving 30-second clean-speech segments (i.e. the

core condition); and (2) the test dataset. Sites also provided

details about features, training data and the basic modeling

methodology applied for each subsystem.

The submitted scores, which were expected to be (and

were interpreted as) log-likelihoods, were not applied any

normalization nor backend before using them for fusions. Let

us consider the score corresponding to subsystem j for the

input utterance x and target language t: sj(x, t). Calibration

and fusion of k subsystems can be simultaneously performed

by computing the fused scores sf (x, t) as a linear combination

of subsystem scores, as follows [7]:

sf (x, t) =
k∑

j=1

αjsj(x, t) + βt (1)

The weights αj (j ∈ [1, k]) and βt (t ∈ [1, L]) are estimated

in a discriminative way, using FoCal, applying linear logistic

regression to minimize the so called CLLR function, which

measures the information provided by the scores with regard

to taking decisions based on the prior alone, so that CLLR = 0
means a perfect system (no information loss), CLLR = log2 L
corresponds to a well calibrated system whose scores provide

no information, and intermediate values (the most common

situation) represent a useful recognizer whose scores do help

taking good decisions.

Note that Equation 1 is useful not only for calibrating

and fusing the scores of two or more subsystems, but also

for calibrating the scores of a single subsystem. Therefore,

Equation 1 is applied for all k (including k = 1). Fusion

parameters were optimized on the scores submitted for the

subset of segments corresponding to the core condition in the

development set.

IV. SUB-SYSTEMS

The participating sites submitted scores for 20 subsystems.

Scores for three additional subsystems, developed according

to the evaluation setup, were added by the organizing team

(GTTS, University of the Basque Country) to enrich the anal-

yses. In the following paragraphs, the most relevant features

of all the subsystems are outlined.

A. GTC-VIVOLAB subsystems

GTC-VIVOLAB sent log-likelihood ratios for three acoustic

subsystems, the first one based on Maximum Likelihood (ML)

2048-mixture Gaussian Mixture Models (GMM), the second

on Maximum Mutual Information (MMI) 2048-mixture GMM,

and the third on Joint Factor Analysis (JFA, following [8][9],

featuring channel compensation and linear scoring) applied

on a high-dimensional GMM supervector space, obtained

by Maximum-A-Posteriori (MAP) adaptation of a Universal

Background Model (UBM). Acoustic features were, in all

cases, Mel-Frequency Cepstral Coefficients (MFCC) with cep-

stral mean normalization, concatenated to their Shifted Delta

Cepstra Coefficients (SDC) under a 7-1-3-7 configuration [10],

yielding a 56-dimensional acoustic vector.

GTC-VIVOLAB also sent scores for five Phone Recognizer

followed by Language Model (PRLM) subsystems, using a

Spanish phone recognizer developed by themselves, based on

GMM/HMM and conventional MFCC, and the Brno Uni-

versity of Technology (BUT) phone recognizers for English,

Czech, Hungarian and Russian, based on ANN/HMM and

Temporal Patterns (TRAPS) with Split Temporal Context

(STC) [11]. The recognized phone sequences/lattices were

used to train an n-gram (4-gram in most cases) language model

for each target language (by means of the SRILM tool [12])

and to score test utterances.

Training and development data were limited to those pro-

vided for the Albayzin 2010 LRE, except for the phone

recognizers, which were trained on different (ortographically

transcribed) databases. A more detailed description of GTC-

VIVOLAB subsystems and the results obtained in the Al-

bayzin 2010 LRE can be found in [13].

B. L2F subsystems

The L2F team sent scores for five PRLM subsystems with

n-gram language modeling, using five different phone recog-

nizers for African Portuguese (AF), Brazilian Potuguese (BR),

American English (EN), European Spanish (ES) and European

Portuguese (PT), all of them based on multistream MultiLayer

Perceptron (MLP) phone classifiers. MLPs were trained on

different amounts of Broadcast News (BN) transcribed data.

Acoustic features included Perceptual Linear Prediction fea-

tures (PLP, 13 static + first derivative), PLP with log-RelAtive

SpecTrAl speech processing features (PLP-RASTA, 13 static +

first derivative) and Modulation SpectroGram features (MSG,

28 static). The phonotactics of each target language for each

type of speech (clean/noisy) was modeled with a 3-gram back-

off model (using Witten-Bell discounting), by means of the

SRILM toolkit [12].

L2F also sent scores for a Gaussian supervector (GSV)

subsystem [14], using SDC features under a 7-1-3-7 con-

figuration, based on PLP features with RASTA filtering and

mean and variance normalization. A 256-mixture UBM was

trained with approximately 9 hours of randomly selected clean

speech (including 1.5 hours per target language). Support

Vector Machines (SVM) with linear kernel were trained as

target language models using the LibLinear implementation

of the libSVM tool [15]. For each target language and each

type of speech (clean/noisy), all the training segments of that

language were used as positive samples and the remaining

segments as negative samples.

In all cases, language models for clean and noisy speech

were trained, and a Gaussian backend was trained and applied

to 12-dimensional score vectors to get 7 log-likelihoods: 6
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for target languages and one for out-of-set languages. In this

work, only the six log-likelihood values corresponding to

target languages were used.

C. GTM subsystems

The original submission of GTM to the Albayzin 2010 LRE

already consisted of two individual subsystems based on two

techniques, Fishervoices and NMFvoices, that had been previ-

ously applied to speaker identification [16]. Both techniques

aimed to get a reduced and discriminative subspace through

linear transformations of the original feature space. In both

cases, each utterance was initially represented by a matrix of

dimension m×n, containing the means of the GMM obtained

by Bayesian adaptation of a UBM to that utterance, m being

the number of Gaussians and n the dimension of the feature

space. Acoustic features consisted of 12 MFCC, the normal-

ized log-energy and their delta and acceleration coefficients,

with mean and variance normalization. Both for Fishervoices

and NMFvoices, the decision about the target language in a

test utterance was taken by searching for the closest training

utterance (i.e. that yielding the lowest euclidean distance) in

the reduced subspace. System development relied exclusively

on the data provided for the Albayzin 2010 LRE.

D. UEF-NTNU subsystems

The UEF-NTNU team sent the scores for one phonotactic

and three acoustic subsystems. The phonotactic subsystem

was based on the BUT English phone recognizer (16 kHz,

trained on TIMIT), and applied a Phone Recognizer followed

by Vector Space Modeling (PR-VSM) approach [17]. Counts

of unigrams and bigrams were used, and 300 dimensions were

retained after SVD. For classification, two GMMs were used

for target and non-target scores.

The acoustic subsystems were developed under three dif-

ferent approaches. The Generalized Linear Discriminant Se-

quence (GLDS) - SVM subsystem, based on [18], used 49-

dimensional SDC features, a third order polynomial expansion

and a neural network with one hidden layer as language

classifier. The MMI-GMM subsystem, based on [19], used

49-dimensional SDC features and 256-mixture MMI trained

(3 iterations) language-dependent GMMs. Finally, the HMM-

VSM approach, an alternative to Gaussian tokenizers com-

monly used under the VSM approach [17], trained a HMM on

the sequences of labels obtained using a 128-mixture UBM as

tokenizer. The HMM was then used as event recognizer before

applying a VSM classifier.

The PR-VSM and HMM-VSM subsystems were applied a

Gaussian backend, whereas a neural network was employed

as backend for the GLDS-SVM and MMI-GMM subsystems.

E. GTTS subsystems

The organizing team provided the scores for 3 phonotactic

PR-SVM subsystems, following [18]. BUT phone recognizers

for Czech, Hungarian and Russian, along with HTK [20],

were used to produce phone lattices. Lattices, which encode

multiple hypotheses with acoustic likelihoods, were then used

to produce expected counts of phone n-grams (up to 3-grams),

which fed a discriminative classifier based on SVM, using

LibLinear [15]. Except for the phone recognizers (trained on

different databases), model estimation and parameter tuning

were performed on the data provided for the Albayzin 2010

LRE. A more detailed description of GTTS phonotactic sys-

tems (applied to a different task) can be found in [21].

V. RESULTS

First we analyse the performance of individual subsystems.

As explained in Section III, subsystem scores were calibrated

by means of FoCal. As shown in Table I, the Cavg ranged

from 0.0207 to 0.5033, most subsystems yielding values lower

than 0.1. Note that CLLR and Cavg on the test set were highly

correlated, with few differences in ranking, whereas the CLLR

on the test set did not correlate well with that obtained on

the development set. Also, though calibration parameters were

adjusted in order to minimize CLLR on the development set,

subsystems yielding the lowest CLLR on the development set

(L2F-PRLM-ES, GTC-JFA and L2F-GSV) did not perform

as well on the test set (the case of L2F-GSV is remarkable).

This may reveal overtraining on the development set for some

subsystems.

TABLE I
PERFORMANCE OF SUBSYSTEMS ON THE CORE CONDITION (CLOSED-SET,

CLEAN-SPEECH, 30-SECOND SEGMENTS), IN TERMS OF CLLR ON THE

DEVELOPMENT AND TEST SETS, AND Cavg ON THE TEST SET.
SUBSYSTEMS ARE RANKED ACCORDING TO Cavg (BEST FIRST).

CLLR CLLR Cavg

id Subsystem (dev) (eval) (eval)
1 GTTS-PRSVM-CZ 0.23853 0.20643 0.0207
2 GTTS-PRSVM-HU 0.18495 0.22897 0.0233
3 GTC-JFA 0.11387 0.23281 0.0244
4 GTTS-PRSVM-RU 0.30046 0.23346 0.0265
5 L2F-PRLM-ES 0.07893 0.29615 0.0273
6 L2F-PRLM-EN 0.25598 0.29991 0.0326
7 L2F-PRLM-BR 0.24360 0.33552 0.0365
8 L2F-PRLM-PT 0.20721 0.32241 0.0389
9 GTC-PRLM-HU 0.45970 0.36321 0.0423
10 GTC-PRLM-RU 0.47957 0.41525 0.0477
11 GTC-PRLM-CZ 0.53160 0.41928 0.0495
12 L2F-GSV 0.16201 0.47611 0.0496
13 GTC-MMI 0.32480 0.49063 0.0497
14 L2F-PRLM-AF 0.24453 0.51002 0.0539
15 GTC-ML 0.47741 0.62041 0.0705
16 UEF-NTNU-GLDS 0.77615 0.88410 0.0969
17 UEF-NTNU-MMI 0.89888 0.88936 0.0976
18 UEF-NTNU-HMM 0.90744 0.84839 0.1130
19 GTC-PRLM-ES 0.80570 1.15025 0.1324
20 GTM-Fisher 1.28786 1.31241 0.1696
21 GTC-PRLM-EN 1.19591 1.98024 0.2375
22 GTM-NMF 1.67096 2.03993 0.2680
23 UEF-NTNU-PRVSM-EN 0.88437 5.87520 0.5033

Most subsystems followed the phonotactic approach and

were based on hybrid ANN/HMM phone decoders, trained on

different amounts and types of data, using MFCC and/or PLP-

RASTA features. Only one of the 10 best subsystems followed

an acoustic approach: the Joint Factor Analysis subsystem by

GTC-VIVOLAB (GTC-JFA) —the best of those originally

submitted to the evaluation—, based on SDC features and

trained only on the data provided for the Albayzin 2010 LRE.
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Table II shows the 5 fusions of k subsystems yielding the

lowest Cavg on the test set, for k ∈ [2, 5]. CLLR performance

on the development and test sets is shown too. First, note that

best fusions are built around best subsystems (those appearing

in the 5 first positions in Table I), specially for k = 2 and

k = 3. This result was expected, since the fused system should

perform better than component subsystems, at least on the

development set (this was not always the case on the test set).

TABLE II
RANKING OF THE 5 BEST FUSIONS OF k SUBSYSTEMS, FOR k ∈ [2, 5], IN

TERMS OF Cavg FOR THE CORE CONDITION ON THE TEST SET. NUMBERS

IN PARENTHESES REFER TO SUBSYSTEM IDENTIFIERS IN TABLE I.

CLLR CLLR Cavg

k Fusion (dev) (eval) (eval)
(3)+(5) 0.02662 0.12151 0.0094
(1)+(5) 0.03970 0.12304 0.0095

2 (1)+(4) 0.15605 0.14120 0.0117
(1)+(3) 0.06293 0.13204 0.0120
(2)+(3) 0.05516 0.11722 0.0120

(3)+(5)+(6) 0.02066 0.10831 0.0066
(1)+(5)+(13) 0.03219 0.10546 0.0074

3 (1)+(3)+(5) 0.02043 0.09043 0.0078
(3)+(5)+(10) 0.02031 0.12137 0.0078
(3)+(5)+(15) 0.01887 0.15120 0.0081

(1)+(5)+(10)+(13) 0.02707 0.11011 0.0059
(2)+(3)+(5)+(15) 0.01550 0.11466 0.0059

4 (3)+(5)+(6)+(9) 0.01926 0.09759 0.0065
(1)+(5)+(7)+(13) 0.03193 0.10255 0.0066
(3)+(5)+(6)+(8) 0.02065 0.10780 0.0066

(2)+(3)+(5)+(9)+(15) 0.01430 0.09723 0.0054
(1)+(5)+(6)+(10)+(13) 0.02573 0.10273 0.0057

5 (3)+(5)+(9)+(13)+(15) 0.01557 0.11427 0.0057
(1)+(2)+(3)+(5)+(15) 0.01254 0.08527 0.0058

(1)+(5)+(10)+(11)+(13) 0.02482 0.09978 0.0058

Note that all the possible fusion combinations have been

estimated and evaluated, which is quite tedious. To get the

best fusion of k subsystems, an incremental procedure may

have been applied by adding a new subsystem to the best

fusion of k − 1 subsystems. However, attending to Table II,

this would generally lead to suboptimal fusions: (1)+(5) for

k = 2, (1)+(5)+(13) for k = 3, (1)+(5)+(10)+(13) for k = 4
—this is optimal—, and (1)+(5)+(6)+(10)+(13). In any case,

fusions obtained this way would be close to optimal and the

procedure would be much faster than an exhaustive search.

Alternatively, if we added a new subsystem to, say, the 5 best

fusions of k−1 subsystems, the computational cost would not

increase dramatically and we would very likely find the best

fusion of k subsystems (at least, that would be the case in

Table II).

With regard to the modeling approaches involved in best

fusions, the PRLM-ES subsystem by L2F, in spite of being

rank 5, appears in 17 (out of 20) fusions in Table II, thus

revealing as the most useful subsystem. The Joint Factor

Analysis subsystem by GTC-VIVOLAB (with 13 appearances)

and the PRSVM-CZ subsystem by GTTS (with 10 appear-

ances) can be also regarded as useful subsystems. Note that

for k = 2, three of the 5 best fusions (including the best

one) involve one acoustic and one phonotactic subsystem.

For k = 3, the 4 best fusions involve one acoustic and two

phonotactic subsystems and the fifth involves two acoustic

and one phonotactic subsystems. Except for k = 2, all the

fusions in Table II include at least one acoustic subsystem,

which is quite relevant taking into account the prevalence of

phonotactic subsystems in Table I. These results confirm the

intuition that acoustic and phonotactic subsystems contribute

complementary information. In particular, the tandem GTC-

JFA + L2F-PRLM-ES ((3)+(5)) seems to be key in many

configurations.

A more detailed analysis reveals that not only the use

of different modeling approaches but also other factors may

provide complementary information and lead to a high per-

formance fusion. Let us focus on the second best fusion

for k = 2: the PRSVM-CZ subsystem by GTTS and the

PRLM-ES subsystem by L2F follow very similar approaches,

both based on phonotactic features, but they complement

quite well. Besides the use of different classifiers (n-gram

language models vs. SVM), other factors come to explain this

result: the acoustic features on which phone recognizers rely,

the phone inventory —which is language-dependent and may

cover different (complementary) sounds— and the data used

to train phone recognizers. The third best fusion for k = 2,

involving the PRSVM-CZ and PRSVM-RU subsystems by

GTTS, is even more illustrative, since both subsystems are

identical except for the phone inventory and the data used to

train phone recognizers.

Obviously, low-ranked subsystems are less likely to be part

of best fusions, except for those that complement well some of

the best subsystems. That is the case of GMM-ML (rank 15)

and GMM-MMI (rank 13) subsystems by GTC, which appear

in many of the best fusions for k = 3, 4, 5. The use of different

features and different modeling approaches (acoustic systems

in an ecosystem full of phonotactic approaches) may be pro-

viding complementary and useful information. Regarding this,

it would have been nice to deal with acoustic subsystems not

based on spectral features but on prosodic and/or articulatory

features.

Up to this point, we have analysed a handful of fusions

(those yielding best performance), trying to find evidences

that explain why some configurations work better than others,

but we still find it difficult to translate fusion performance

into a rank of useful (good for fusion) subsystems. To that

end, given a set of subsystems Γ, we now define the average
k-fusion performance of subsystem S ∈ Γ, C̄LLR(S,Γ, k),
as the average CLLR performance of fusions of k sub-

systems including S. The best subsystem according to this

metric would be that providing, on average, the best fusions

on Γ. Table III shows the 5 best subsystems according to

C̄LLR(S,Γ, k) computed on the test set, for k ∈ [1, 5]. Note

that C̄LLR(S,Γ, 1) = CLLR(S).
Attending to Table III, the best subsystems match almost

exactly those yielding best performance individually. The

PRSVM-CZ subsystem by GTTS seems to be the more robust

in providing high performance fusions. Note that the PRLM-

ES subsystem by L2F , which is part of the 5 best fusions for

k = 3, 4, 5, does not even appear in Table III (it ranks sixth

381



TABLE III
RANKING OF SUBSYSTEMS ACCORDING TO THE AVERAGE k-FUSION

PERFORMANCE ON THE TEST SET, FOR k ∈ [1, 5].

(subsystem id) : C̄LLR(S,Γ, k)
k = 1 k = 2 k = 3 k = 4 k = 5

(1) : 0.2064 (1) : 0.1712 (1) : 0.1481 (1) : 0.1348 (1) : 0.1300
(2) : 0.2290 (2) : 0.1875 (3) : 0.1622 (3) : 0.1484 (2) : 0.1434
(3) : 0.2328 (3) : 0.1880 (2) : 0.1627 (2) : 0.1490 (3) : 0.1504
(4) : 0.2335 (4) : 0.2069 (6) : 0.1787 (6) : 0.1598 (6) : 0.1529
(5) : 0.2962 (6) : 0.2159 (4) : 0.1814 (4) : 0.1650 (4) : 0.1561

for k = 2, 3, 4 and eleventh for k = 5). This only means that

its performance in fusion is quite sensitive to the subsystems

it is combined with. As a result, the proposed measure seems

useless, since the average behaviour it describes tells nothing

about the maximum achievable performance, which is the

key issue when deciding which subsystems would be worth

developing and fusing.

VI. CONCLUSIONS

In this work, we have studied the performance of fusions of

heterogeneous multi-site language recognition subsystems on

the core task defined for the Albayzin 2010 LRE. Fusions

of k subsystems (for k ∈ [1, 5]) have been estimated and

applied by means of the well-established FoCal package. As

expected, best fusions involved the best individual subsystems.

In this study, an acoustic subsystem based on JFA and various

phonotactic subsystems populated most of the best configu-

rations. Despite the prevalence of phonotactic approaches (or

maybe because of that), the JFA subsystem and two other

acoustic subsystems revealed as key elements to get high-

performance fusions. It was observed that subsystems based on

different classifiers and/or different features may significantly

contribute to fusion performance. Even low-ranked subsystems

may take part in high-performance fusions if they contribute

new complementary information to best individual subsystems.

An average k-fusion performance measure was defined with

the aim to rank subsystems according to their usefulness
in fusions, but it did not identify some of the subsystems

involved in best fusions. More work is needed to define

suitable measures and effective ways of determining which

kind of subsystems (features, modeling approaches, classifiers,

etc.) would be worth developing to get optimal fusions. For

now, developing a diverse ecosystem of subsystems (including

acoustic and phonotactic approaches, short-time spectral and

segmental features, different classifiers, etc.) seems to be the

most secure way to high-performance fusions.
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