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Abstract. In this paper we compare the performance of acoustic HMMs
obtained through Viterbi training with that of acoustic HMMs ob-
tained through the Baum-Welch algorithm. We present recognition re-
sults for discrete and continuous HMMs, for read and spontaneous speech
databases, acquired at 8 and 16 kHz. We also present results for a com-
bination of Viterbi and Baum-Welch training, intended as a trade-off so-
lution. Though Viterbi training yields a good performance in most cases,
sometimes it leads to suboptimal models, specially when using discrete
HMDMs to model spontaneous speech. In these cases, Baum-Welch shows
more robust than both Viterbi training and the combined approach, com-
pensating for its high computational cost. The proposed combination of
Viterbi and Baum-Welch only outperforms Viterbi training in the case
of read speech at 8 kHz. Finally, when using continuous HMMSs, Viterbi
training reveals as good as Baum-Welch at a much lower cost.

1 Introduction

Most speech recognition systems use Hidden Markov Models (HMM) to represent
the acoustic content of phone-like units and words. Though other criteria may
be applied, the reestimation of HMM parameters is commonly done according
to the the Mazimum Likelihood Estimation (MLE) criterion, i.e. maximizing
the probability of the training samples with regard to the model. This is done
by applying the Ezpectation-Mazimization (EM) algorithm [1], which relies on
maximizing the log-likelihood from incomplete data, by iteratively maximizing
the expectation of log-likelihood from complete data. As shown in [2], this leads
to the Baum-Welch reestimation formulas.

The MLE criterion can be approximated by maximizing the probability of
the best HMM state sequence for each training sample, given the model, which
is known as segmental k-means [3] or Viterbi training. Viterbi training involves
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much less computational effort than Baum-Welch, still providing the same —
or slightly worse— performance, so it is a common choice among designers of
speech recognition systems.

However, the Baum-Welch algorithm shows very interesting properties: (1)
in the case of discrete HMMs it does not need any model initialization, but just
non-zero random values verifying the stochastic constraints; (2) in the case of
continuous HMMs, a suitable initialization can be done with the output dis-
tribution parameters of discrete HMMs, on the one hand, and the means and
variances of acoustic prototypes obtained by vector quantization, on the other
—though other strategies have been successfully applied [4]; and (3) it exhaus-
tively uses all the available data to produce robust and optimal estimates. With
regard to Viterbi training, (1) it is shown that even in the case of discrete HMMs,
it requires some reasonable initialization, either by using the models obtained
for other databases, or by training initial models on a hand-labelled subset of
the training database; and (2) it makes a limited use of the training data, since
only observations inside the segments corresponding to a given HMM state are
used to reestimate the parameters of that state, resulting in sharper but less
robust models. It will depend on the the amount of available data whether or
not Viterbi training produces robust enough estimates. Though the segmenta-
tion implicitly done by Viterbi training will not exactly match the right one
—i.e. that produced by an expert— they overlap to a great extent, as shown in
a previous work [5]. When the amount of training data is large enough, segmen-
tation errors will cancel each other, and the right observations —i.e. the relevant
features that identify an HMM state— will stand out.

The rest of the paper is organized as follows: Sections 2 and 3 briefly review
the Baum-Welch and Viterbi training algorithms; Section 4 presents a combina-
tion of Viterbi segmentation and Baum-Welch reestimation, intended as a trade-
off solution; Section 5 compares the amount of training data used to estimate
HMM parameters for the three training algorithms; Section 6 defines a mea-
sure of segmentation quality based on hand-labelled segmentations generated by
experts; Section 7 describes the experimental framework, and presents and dis-
cusses phonetic recognition results for read and spontaneous speech databases;
finally, conclusions are given in Section 8.

2 The Baum-Welch algorithm: single vs. embedded
model reestimation

The Baum-Welch algorithm is based on the computation of two functions, known
as Forward and Backward probabilities, «(i,t) and B(3,t), for each state i €
[1,N] of an HMM and each frame ¢ € [1,7T] of an observation sequence O =
01, Oy, . ..,Or. Computing these functions yields a complexity of order O(N2T).
Once computed, Forward and Backward probabilities are used to weight the
contributions of each observation O; to the HMM parameters. Reestimation
formulas can be found in [2]. Note that each observation O, contributes to the
reestimation of all the HMM parameters.



If L observation sequences O%) = Ogl),Ogl),...,O%), with [ = 1,2,...,L,
are explicitly available for an HMM, the resulting procedure is known as sin-
gle model Baum-Welch reestimation [6]. This procedure is typically applied for
training a word HMM starting from speech samples of that word, or for ini-
tializing phone HMMs starting from explicit hand-labelled phone segments. For
each observation sequence O(), the Forward and Backward probabilities must
be computed, and then various contributions and norms accumulated, which
yields a computational complexity of order O(3N?T; + NT; + NT,RC) for dis-
crete HMMs, and O(3N?T; + NT; + NT;M D) for continuous HMMs, where R
is the number of acoustic streams or representations, C' the number of symbols
in the discrete output distributions, M the number of gaussian components in
the mixtures used to represent the output distributions in continuous HMMs,
and D = Eil d; —with d; the dimension of the acoustic stream i— the total
number of components of acoustic vectors in the continuous case. In the most
common configurations, the last term of the summation is dominant. Summing
for all the training sequences and all the phone HMMs, we get complexities of
order O(NTRC) and O(NTMD), respectively, where T is the length of the
training database.

However, usually only a small fraction of the speech databases is hand-
labelled, so phone HMMSs must be jointly trained starting from phonetic tran-
scriptions of speech utterances. This is known as embedded model Baum-Welch
reestimation [6]. For each training sequence O() a large HMM Aypqin (0W) is
built by concatenating the phone HMMs corresponding to the transcription of
OW, If no phone skips are allowed in training, the possible state transitions re-
duce to those ocurring inside a phone HMM or between two consecutive phone
HMMs. This results in that both the Forward and Backward procedures yield
complexities of order O(N?T,F}), where F is the length of the phonetic tran-
scription of O®W. Not only the Forward and Backward procedures, but also
their contributions to the HMM parameters must be computed, resulting a
complexity of order O(SNT}F, + 3N?T,F, + NT;F,RC) in the discrete case,
and O(5NT,F; + 3N?>T,F, + NT;F;M D) in the continuous case. Again, the last
term is dominant, so these complexities can be approximated by O(NT;F;RC)
and O(NT;FiMD), respectively. Defining F = 7% Zle T,F;, and summing
for all the training utterances, we get complexities of order O(NTFRC) and
O(NTFMD), respectively. So the embedded model Baum-Welch reestimation
is approximately F times more expensive than the single model Baum-Welch
reestimation.

3 The Viterbi training algorithm

The Viterbi algorithm [7] can be applied to get the most likely state sequence
S in the training sequence HMM Ay, 4in (O(l)). This is sometimes called forced
alignment, and takes a computational complexity of order O((NF;)*T;). Viterbi
reestimation is based on maximizing the likelihood of S (), given the observation
sequence O and the model Atmm(O(”). It uses the most likely state sequence



S® to estimate the HMM parameters, so each observation O,El) only contributes
to reestimate the parameters of the most likely state at time ¢, sgl). Reestimation
formulas can be found in [3]. Without phone skips, the possible state transitions
in Agrain(OW) reduce to those ocurring inside a phone HMM or between two
consecutive phone HMMs. So the computational complexity of the algorithm
reduces to O(N2FT;). On the other hand, for each observation sequence, con-
tributions to the estimation of HMM parameters must be computed, which yields
a complexity of order O(T;RC) in the discrete case, and O(T;M D) in the con-
tinuous case. Summing for all the training utterances, we get complexities of
order O(N*TF +TRC) and O(N*TF + T M D), respectively. In practice, these
complexities are between one and two orders of magnitude lower than those of
the embedded model Baum- Welch algorithm.

The sharpness of Viterbi estimates becomes a problem in the case of dis-
crete HMMs, since some symbols not seen in training for a particular output
distribution, may appear in an independent test corpus, thus leading to zero
probability and breaking the search. So a kind of smoothing must be applied to
the output distribution parameters. The simplest technique —which we apply in
our implementation— consists of changing only values under a certain threshold
7, by assigning them the value 7 and renormalizing the distribution to verify
the stochastic constraints. Threshold smoothing only guarantees that the search
will not crash, and more sophisticated techniques can be found in the literature.
However, such techniques make assumptions —which might not be true— about
the underlying distributions. On the other hand, the embedded model Baum-
Welch reestimation provide smooth and robust parameters in a more natural
way —at the expense of higher computational costs.

4 Combining Viterbi segmentation and single model
Baum-Welch reestimation

We propose the following methodology:

1. For each training sequence O(!), the Viterbi algorithm is applied to find the
most likely state sequence SO in the training sequence HMM Ay;.4in (O®).

2. The single model Baum-Welch reestimation formulas are used to update the
parameters of each phone HMM, starting from the phone segments obtained
after step (1) over 2 = {0W|l =1,2,...,L}.

3. Steps (1) and (2) are repeated until convergence.

This is a sort of tradeoff between the Baum-Welch and Viterbi training algo-
rithms, the most likely phone segmentation —corresponding to the most likely
state sequence— playing the role of a hand-labelled segmentation in single model
Baum-Welch reestimation. On the one hand, this algorithm requires less com-
putational effort than the embedded model Baum-Welch algorithm: summing for
all the training utterances, complexity is of order O(N?TF + NTRC) in the
discrete case, and O(N?TF + NTMD) in the continuous case, which is slightly



higher than that of Viterbi reestimation. On the other hand, the resulting es-
timates are expected to be more robust than Viterbi estimates, since all the
state sequences inside phone segments —instead of just the most likely state
sequence— are considered.

5 Counting effective training data

The Baum-Welch and Viterbi training algorithms differ in the use of the data.
Whereas Viterbi uses each observation vector O, to reestimate the parameters of
just one specific HMM state, Baum-Welch uses it to reestimate the parameters
of all the HMM states. In other words, Baum-Welch estimates are obtained
from much more data than Viterbi estimates. To evaluate these differences, we
next count the number of observation vectors effectively used to estimate HMM
parameters for the three training algorithms.

In the case of embedded model Baum-Welch, assuming no phone skips in the
training model A;yqi, (OW) of an observation sequence O®), the function o) (i, t)
is zero for the first i/N frames, and in the same way the function () (i,t) is zero
for the last F; —i/N —1 frames. So for each given state i of Aspqin(O1), there are
F;—1 frames for which the corresponding contributions to the HMM parameters
are zero. Summing for all the states of phone HMMs in A¢rqin (O(l)) and for all the
training utterances, we find that the number of effective training observations is
S S Xl (Ti—Fi41) = N ¥, [TiF - FR+ F] = NTF - NL(F? - F),
where F2 = LS F2and F= 1Y F.

In the case of Viterbi training, each observation sequence O is divided into
F; segments, and each observation vector in those segments is assigned to a
specific state in Agqin(O?). Let n(V)(f,4) be the number of observation vectors
assigned to state i of the phone HMM f. Then, summing for all the states of
phone HMMs in Atmm(O(l)) and for all the training utterances, the number of
effective training vectors is Elel Z?’zl Zfil nW(f,i) = E{’:I T,=T.

In the case of combined Viterbi segmentation + single model Baum-Welch
reestimation, segmentation is done only at the phone level, and the parame-
ters of each HMM state are trained with all the observation vectors assigned
to the corresponding phone. Let n(!)(f) be the number of observation vectors
assigned to the phone HMM f in Atmm(O(l)). Then, the number of effective
training vectors for the entire training database is 3/, Z?’: SN a0 =
NYLy S n®(f) = N, Ti= NT.

_ This means that the embedded model Baum-Welch algorithm uses F— # (F2—

F’) times more data than the combined approach, which, on the other hand, uses
N times more data than Viterbi training.

6 Measuring segmentation quality

Viterbi training depends on the quality of the segmentation implicitly associated
to the most likely state sequence, so we set out to evaluate automatic segmenta-



tions. A subset of the training utterances may be hand labelled and segmented.
Then, hand-labelled segments may be compared with those automatically pro-
duced by forced alignment —based on a given set of HMMs. Let n,. be the number
of frames assigned by forced alignment to the same phone than experts and 7,
the number of frames assigned to the wrong phones. Then S = + x100 is the
percentage of frames correctly classified. If the HMMs used in forced alignment
were obtained through Viterbi training, S can be interpreted as the amount of
acoustic information correctly used to estimate the parameters of such models.

7 Phonetic recognition experiments

Experiments were carried out over four different databases, whose main features
are shown in Table 1.

Table 1. Speech databases used in phonetic recognition experiments.

SENGLAR16 SENGLAROS8 INFOTREN | CORLEC-EHU-1
Sampling rate
(kHz) 16 8 8 16
Speech read read spontaneous spontaneous
modality
Recording microphone telephone simulated | telephone analog tape
conditions laboratory laboratory office all environments
Other design phonetically phonetically . . .
issues balanced balanced task specific generic, noisy
Speakers 79/37
(training/test) 109/37 109/29 63/12 73/43
80/36
Utterances 1414/723
(training/test) 1529/700 1529/493 1349/308 1433/704
1427/710
Frames 1357783/681601
(training/test)| 469620/244026 469626/179762 703719/182722 1355586/683698
1365399/673985
Phones 189108/90596
(training/test)| 60399/32034 60399/23607 62729/13683 187331/92373
182969/96735
323.25
F 47.93 47.93 82.88 338.25
335.06
7 278.98
F—-L(F2-F) 41.74 41.74 75.18 292.23
290.75

The mel-scale cepstral coefficients (MFCC) and energy (E) —computed in
frames of 25 milliseconds, taken each 10 milliseconds— were used as acoustic
features. The first and second derivatives of the MFCCs and the first derivatives
of E were also computed. Four acoustic streams were defined (R = 4): MFCC,
AMFCC, A>MFCC and (E,AE). In the discrete case, vector quantization was
applied to get four codebooks, each one consisting of 256 centroids (C' = 256)
minimizing the distortion in coding the training data. The set of sublexical units
consisted of 23 context-independent phones and two auxiliary units: silence and
filler, this latter used only with spontaneous speech. Each sublexical unit was



represented with a left-right HMM consisting of three states (N = 3) with self-
loops but no skips, the first state being initial and the last one final. The output
probability at each time ¢ was computed as the non-weighted product of the
probabilities obtained for the four acoustic streams. No phonological restrictions
were applied. Instead, transitions between sublexical HMMs in the recognition
model were given a fixed weight w —sometimes called insertion penalty. Only
the most common values were applied, namely w = 1.0 and w = 1/H, H being
the number of phone HMMs.

When using discrete HMMs to model read speech at 16 kHz, all the algo-
rithms yielded almost the same performance. This reveals that applying thresh-
old smoothing to Viterbi estimates is enough to handle independent data in
recognition. However, with read speech at 8 kHz significant differences were
found, as shown in Table 2. The embedded model Baum-Welch algorithm gave
the best result (63.12%, with w = 1.0), more than 5 points better than that
obtained through Viterbi (57.71% with w = 1.0) and more than 3 points bet-
ter than that obtained through the combined approach (59.55% with w = 1.0).
Note also that including insertion penalties (w = 1/H) did not improve the
performance.

Table 2. Recognition rates using discrete HMMs. Numbers in parentheses indicate the
iteration for which the maximum rate was found.

w=1.0 w=1/H
emBW Vit Vit4+smBW| emBW Vit Vit4+smBW
SENGLARI16 65.67 ( 8) [65.66 (10)| 65.64 ( 9) 65.28 ( 8) [65.36 ( 3)| 65.35 ( 7)
SENGLAROS8 63.12 ( 8) [57.71 (12)| 59.55 (11) | 62.70 ( 7) [57.70 (10)| 59.15 ( 8)
INFOTREN 50.70 (19) |49.63 (19)| 49.48 ( 8) | 52.53 (20) |51.50 (11)| 50.97 (19)

CORLEC-EHU-1 (1) | 42.27 (40) [29.98 (16)| 29.74 ( 8) | 42.06 (40) [30.07 (17)| 30.44 (16)
CORLEC-EHU-1 (2) | 44.45 (20) [43.71 (20)| 43.98 (20) | 44.85 (20) |44.33 (20)| 44.68 (20)
CORLEC-EHU-1 (3) | 46.10 (17) [45.27 (17)| 45.45 (18) | 46.29 (17) |45.70 (16)| 45.95 (14)

CORLEC-EHU-1

44.27 39.65 39.72 44.40 40.03 40.36
(average)

Do these differences come from a poor segmentation at 8 kHz? Table 3 shows
the value of the parameter S defined in Section 6, computed for a hand-labelled
part of the training database —the same for SENGLAR16 and SENGLARO0S-,
consisting of 162 utterances. It reveals that the quality of automatic segmen-
tations produced with Viterbi HMMs reduces from almost 90% at 16 kHz to
less than 60% at 8 kHz. On the other hand, all the training approaches yielded
similar S values at 16 kHz, whereas remarkable differences were observed at 8
kHz, specially between Viterbi HMMs and embedded model Baum-Welch HMMs.
However, since these latter were not trained based on that segmentation but in-
stead on all the possible state sequences, the resulting parameters were smoother
and more robust than those obtained through Viterbi. This demonstrates that
the best HMMs —in terms of recognition rates— might not provide the best
segmentations, and vice versa.

Things were quite different when using discrete HMMs to model spontaneous
speech. First, as shown in Table 2, recognition rates were much lower: more



Table 3. Quality of automatic segmentations obtained with the best discrete HMMs
for SENGLAR16 and SENGLAROS.

Vit Vit+smBW emBW
SENGLAR16 89.72 89.64 87.98
SENGLAROS8 58.86 55.03 41.67

than 10 points lower than those obtained for SENGLARO8 in the case of IN-
FOTREN, and more than 20 points lower than those obtained for SENGLAR16
in the case of CORLEC-EHU-1. Second, the embedded model Baum-Welch al-
gorithm yielded the best results in all the cases. Third, the combined approach
slightly outperformed Viterbi training in the case of CORLEC-EHU-1, but it
led to slightly worse results in the case of INFOTREN. Fourth, both Viterbi
and the combined approach might lead to very suboptimal models, as in the
case of CORLEC-EHU-1(1), where the recognition rate for the embedded model
Baum-Welch algorithm was 12 points higher than those obtained for the other
approaches. This may be due (1) to very inaccurate segmentations in the train-
ing corpus, (2) to a great mismatch between the training corpus and the test
corpus, either because of speaker features or because noise conditions, and (3)
to the increased acoustic variability of spontaneous speech, which may require a
more sophisticated smoothing technique for Viterbi estimates. Finally, insertion
penalties did almost always improve performance, more clearly in the case of
INFOTREN. This may reveal the presence of silences and spontaneous speech
events like filled pauses or lengthened vowels, lasting more than the average and
implying the insertion of short phones in recognition.

Attending to the asymptotic complexities given in Sections 2, 3 and 4, the
embedded model Baum-Welch algorithm should be 100 times more expensive
than Viterbi training for SENGLARI16 and SENGLAROQ8, 144 times more ex-
pensive for INFOTREN, and 254 times more expensive for CORLEC-EHU-1.
However, attending to the experiments, the embedded model Baum-Welch algo-
rithm took between 13 and 23 times the time of Viterbi training. This may be
due to the fact that the Forward and Backward functions were zero much more
times than expected and the corresponding contributions to the HMM parame-
ters were not really computed. This is an important result, since the embedded
model Baum-Welch algorithm, in practice, seems to be only one order of magni-
tude more expensive than Viterbi training. Regarding the combined approach,
it was in practice (with N = 3) around 2 times more expensive than Viterbi
training, which is coherent with their asymptotic complexities.

As shown in Table 4, when using continuous HMMs to model read speech,
all the training algorithms yielded similar rates. Again, insertion penalties did
not improve performance for read speech. Among the mixture sizes tested, M =
32 revealed as the best choice, yielding a good balance between recognition
rate and computational cost. However, the best rates were found for M = 64,
outperforming discrete HMMs in more than 7 points for SENGLARI16, and in
more than 5 points for SENGLARO0S.

Does this mean that Viterbi segmentation improves when using continuous
HMMs? The answer is no. In fact, as shown in Table 5, except for the embedded



Table 4. Recognition rates using continuous HMMs with various mixture sizes (M =
8, 16, 32 and 64), over the read speech databases SENGLAR16 and SENGLAROS.

w = 1.0 w=1/H

M| emBW Vit Vit+smBW| emBW Vit Vit4+smBW
8 | 70.24 (12) [70.26 (12)| 70.43 (12) |69.79 (12) |70.01 (12)| 69.82 (10)
16| 71.76 (12) |71.91 (12)| 71.83 (12) | 71.36 (10) [71.56 (12)| 71.45 (12)
32| 72.72 (12) |72.72 (10)| 72.72 (11) | 72.47 (11) [72.37 (12)| 72.42 (11)
64| 73.18 ( 6) [73.16 ( 6)| 73.15 (6) | 72.88 (7) |72.85 (11)| 72.90 (11)

8 | 65.82 (12) [66.01 (12)| 65.91 (12) |65.71 (12) [65.86 (12)| 65.77 (12)
16| 67.26 (12) |67.35 (11)| 67.28 (12) | 67.12 (12) [67.10 (11)| 67.13 (12)
32[ 68.37 (12) [68.32 (12)| 68.30 (12) |68.30 (12) |68.54 (11)| 68.21 (12)
64| 63.65 (12) 68.73 (9)| 68.76 (11) |68.67 (12) [68.60 ( 9)| 68.60 ( 7)

SENGLARI16

SENGLAROS8

model Baum-Welch HMMs for SENGLARO8, the quality of segmentations ob-
tained with continuous HMMs is worse than that obtained with discrete HMMs.
The improvement must be claimed for the continuous representation of the out-
put distributions, which in the case of Viterbi training compensates for the
sharpness of the estimates. So Viterbi training reveals as the best choice for con-
tinuous HMMs, since it yields the same rates as embedded model Baum-Welch
at a much lower cost.

Table 5. Quality of automatic segmentations obtained with the best continuous HMMs
for SENGLAR16 and SENGLARO0S8.

Vit Vit4+smBW emBW
SENGLAR16 88.05 88.00 87.95
SENGLAROS8 53.57 53.52 53.41

According to the asymptotic complexities obtained above, using the embedded
model Baum-Welch algorithm to train continuous HMMs with 8, 16, 32 and 64
gaussians per mixture, should be approximately 60, 85, 105 and 120 times more
expensive than using Viterbi training, for SENGLAR16 and SENGLAROS8. In
practice, the embedded model Baum-Welch algorithm was only between 15 and
30 times more expensive than Viterbi training. On the other hand, according
to the experiments —and as expected from the asymptotic complexities—, us-
ing the combined approach to train continuous HMMs for SENGLAR16 and
SENGLARO0S, was again around 2 times more expensive than using Viterbi.

8 Conclusions

In this paper we showed the robustness of the embedded model Baum-Welch
reestimation of discrete HMMs, compared to Viterbi training, for both read and
spontaneous speech. In the case of spontaneous speech, the presence of noises,
filled pauses, silences, lengthenings and other long-lasting events —revealed by
the need for insertion penalties in recognition—, could seriously degrade the
performance of Viterbi training, whereas Baum-Welch estimates kept robust to
those phenomena. Experiments showed that Baum-Welch reestimation was only



an order of magnitude more expensive than Viterbi training. The combination
of Viterbi segmentation and single model Baum-Welch reestimation only out-
performed Viterbi training in the case of read speech at 8 kHz, but still yielding
lower rates than the embedded model Baum-Welch reestimation.

On the other hand, it was shown that the best models in terms of recog-
nition accuracy may not provide the best segmentations. The best models in
terms of segmentation quality were always obtained through Viterbi training,
which is coherent, since Viterbi training aims to maximize the probability of the
most likely state sequence, given the model and the sample. When using discrete
HMMs, Viterbi training led to worse estimates than Baum-Welch. This may be
explained either by a strong dependence on segmentation quality, by a great
mismatch between training and test data, or by the increased acoustic variabil-
ity of spontaneous speech, which may require a more sophisticated smoothing
technique for Viterbi estimates.

With regard to continuous HMMs, all the training approaches yielded the
same performance, so Viterbi training —the cheapest approach— revealed as
the best choice. It was shown that continuous HMMs did not yield better seg-
mentations than discrete HMMs, so —as expected— the performance of Viterbi
training did not only depend on the quality of segmentations but also on the
acoustic resolution of HMMs, which is drastically increased with the continuous
representation of output distributions. Finally, phonetic recognition experiments
with continuous HMMs are currently in progress for the spontaneous speech
databases INFOTREN and CORLEC-EHU-1, applying only Viterbi training.
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