
1

A COMPARATIVE STUDY OF SEVERAL PARAMETRIC
REPRESENTATIONS FOR SPEECH RECOGNITION1

L. J. Rodríguez2 and M. I. Torres

Departamento de Electricidad y Electrónica. Universidad del País Vasco.
Apartado 644. 48080 BILBAO. SPAIN.

e-mail : luisja@we.lc.ehu.es, manes@we.lc.ehu.es

Abstract-. Discriminative acoustic features of speech signal are represented through different sets of spectral

parameters in speech recognition tasks. Several parametric representations were considered in this work: log-

area ratios, reflection and cepstral coefficients obtained through Linear Prediction analysis, and Fourier

Transform derived cepstral coefficients. All of them were evaluated over an easy recognition task. Their

statistical behaviour as well as the influence over the system performance of vector size, bilinear transformation

coefficient, pre-emphasis and energy, was also evaluated along with the analysis method.

Introduction-.

Automatic Recognition of Continuous Speech is nowadays a classical scope of Pattern

Recognition. From this perspective, speech can be considered as composed by a relatively

small set of primitives. Some combination of these primitives in a multilevel hierarchy would

lead to a large set of more complex patterns which are strongly related by a powerful

structure [Levinson, 85]. The spectral analysis of the speech signal constitutes the zero level

of the above hierarchy. The mapping between the acoustic features and further sublexical

units (phones, syllables, context-dependent phones, etc.) can then been automatically learnt

from a training set, typically within the Syntactic Pattern Recognition approach.

The object of the spectral analysis procedure is to provide relevant information that

should be speaker, task and environment-independent. The discriminative acoustic features of

speech signal are finally represented by a small set of robust parameters. The evaluation is

usually based on final recognition rates. However, the statistical behaviour should also be

considered when choosing among several possible parametric representations. Some

approaches, like semicontinuous and continuous hidden Markov modelling, assume the

parameters to be statistically independent, thus having diagonal covariance matrices

[Bellegarda, 90][Huang, 93]. On the other hand, distance-based methods assume a similar

variance for all the coefficients [Nocerino, 85][Tohkura, 87]. These assumptions are more or

less adequate depending on the analysis procedure.

The aim of this work was to evaluate a large set of parametric representations over an

easy recognition task. An analysis of their statistical behaviour was also performed. Finally
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we analyzed the influence of several factors in the recognition performances: analysis

method, bilinear transformation, pre-emphasis, energy and number of coefficients.

Parameters-.

Two groups of parametric representations were compared (Table I): Linear Prediction

(LP) and Fourier Transform (FT). The first one is considered as the best choice for 8 and 10

kHz sampled databases [Lee, 89], and includes reflection coefficients (RC), log-area ratios

(LAR) and cepstral coefficients (LPCEP). These parameters are equivalent representations of

the LP spectrum. Typical vector sizes are 14 for RC and LAR, and 12 for LPCEP [Lee, 89].

The second group includes the Fast Fourier Transform derived cepstral coefficients

(FFTCEP), as defined in [Rabiner, 78]. The perceptual frequency distortion represented

through the Bark scale [Zwicker, 81] can be introduced by averaging the FFT coefficients in

consecutive bands of frequency (BFB). The number of bands is related to the sampling

frequency: 21 bandpass filters are needed for a 16 kHz sampling rate. Then the corresponding

cepstral coefficients (BFBCEP) can be computed by applying a cosine transform.

The BFB derived parameters have been typically used for speech recognition with

sampling rates of 16 kHz, whereas LP ones have been used for 8 and 10 kHz [Shikano,

86][Lee, 89]. However, there is no experimental evidence for this choice. In this work we

attempted to solve this point by a direct comparison of system performances in an isolated

word recognition task. The Bilinear Transformation (BLT) of the time sequence [Oppenheim,

72][Lee, 89] was introduced for FFTCEP and LPCEP to emulate the perceptual frequency

distortion represented by the Bark scale.

Another problem which has not been completely solved [Paliwal, 84] is the role of

preemphasis in speech analysis for recognition. Therefore, all the parameters were computed

with and without preemphasis of the speech signal. A Hamming window of 32 ms, with

overlapping of 16 ms, was applied in all cases. Table I shows a list of the parameter sets

considered in this work.

Table I. Parametric representations tested: LP-based (I) and FT-based (II). Preemphasis was considered in
all cases. Bilinear transformation (BLT) was applied only to LPCEP and FFTCEP.

    PARAMETER                                                                       vector size                   preemphasis                  BLT                log-energy    

I.1-. Reflection Coefficients (RC) 14 Y/N NO NO
I.2-. Log-Area Ratios (LAR) 14 Y/N NO NO
I.3-. LP derived cepstral coefficients (LPCEP) 12 Y/N Y/N Y/N

II.1-. FFT derived cepstral coefficients (FFTCEP) 12 Y/N Y/N Y/N
II.2-. Bark-scaled Filter Bank coefficients (BFB) 21 Y/N NO NO
II.3-. BFB derived cepstral coefficients (BFBCEP) 12 Y/N NO Y/N

The log-energy of each frame was computed, re-scaled and alternatively added as the

first component to the vector of parameters in the following cases: BFBCEP, LPCEP and

FFTCEP, with different vector sizes: 6, 8, 10 and 12.
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Experiments and Results-.

An experimental evaluation was carried out on an easy recognition task. The corpus

consisted of 1000 utterances of the Spanish digits uttered by ten speakers and was acquired at

16 Khz. In order to obtain a significant size for the test set, a 5-fold cross-validation technique

was applied [Raudys, 91]. In each partition the training size was 800 utterances and the test

set was 200 utterances, yielding an effective test set of 1000 utterances. The recognition

procedure was based on the application of the dynamic time warping (DTW) algorithm with

Euclidean distance in order to compare each test sample to each pattern sample [Davis, 80]

[Paliwal, 82a, 82b and 84]. ESPS software [ESPS, 93] was used to compute, store and plot

the parameters. Table II summarizes the results of these experiments.

Table II.  Recognition rates obtained in the 5-fold cross-validation experiments.

Parameter Vector size Preemphasis BLT coefficient % Recognition

BF 21 NO ----- 99.2
BFB 21 YES ----- 99.2

BFBCEP 12 NO ----- 99.9
BFBCEP 12 YES ----- 99.9

FFTCEP 12 NO ----- 96.6
FFTCEP 12 NO 0.4, 0.5, 0.6, 0.7, 0.8 98.1, 98.4, 98.3, 97.6, 97.9

FFTCEP 12 YES ----- 96.2
FFTCEP 12 YES 0.4, 0.5, 0.6, 0.7, 0.8 98.1, 98.3, 98.4, 97.5, 97.5

LPCEP 12 NO ----- 95.8
LPCEP 12 NO 0.4, 0.5, 0.6, 0.7, 0.8 97.7, 98.1, 98.9, 99.1, 98.9

LPCEP 12 YES ----- 95.9
LPCEP 12 YES 0.4, 0.5, 0.6, 0.7, 0.8 98.6, 98.9, 99.3, 99.6, 99.2

RC 14 NO ----- 93.2
RC 14 YES ----- 94.4

LAR 14 NO ----- 96.3
LAR 14 YES ----- 94.5

Figure 1a shows the recognition rates obtained through the parametric representations

LPCEP and FFTCEP described in the previous section and the different values of the BLT

coefficient. From this figure, we can conclude that the optimal value of the this coefficient

depends on the analysis method. A value of 0.56 matches the Bark scale [Rodriguez, 94] but

different optimal values were found for both sets of parameters. Figure 1b shows the

recognition rates for the same experiments when the best BLT coefficient was chosen for

different vector sizes. The BFB coefficient vector was no longer considered because of the

large computation required in the recognition task. The RC and LAR parameters provided

poor recognition rates and thus are not represented. In Figure 1b, several parameters appear

with very high recognition rates. Most of them are also very similar and it is not easy to

evaluate their performances.
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Figure 1. Recognition rates obtained through the first series of experiments: (a) LPCEP and FFTCEP with
different values of the BLT coefficient, and (b) BFBCEP, LPCEP and FFTCEP with different vector sizes and
optimal choices for both the BLT coefficient and preemphasis.

In order to increase the difficulty of the task, a second series of experiments was carried

out. In each partition the training size was 200 utterances and the test set was 800 utterances,

yielding an effective test set of 4000 utterances. Only BFBCEP, LPCEP and FFTCEP were

considered in this case. Figure 2 shows the recognition rates for these experiments for

different values of the BLT coefficient (Figure 2a) and different vector sizes (Figure 2b).

BFBCEP provided the best system performance when the vector size was 12. However,

LPCEP with preemphasis and bilinear transformation provided higher recognition rates when

the vector size was 6 and 8. Adding the log-energy to the vector of parameters improved the

recognition rates significantly, especially for FFTCEP and LPCCEP. LPCCEP+log-energy

provided the best recognition rates with vector sizes 6, 8 and 10, and only slightly lower rates

than BFBCEP+log-energy with vector size 12.
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Figure 2. Recognition rates obtained through the second series of experiments: (a) LPCEP and FFTCEP with
different values of the BLT coefficient, and (b) BFBCEP, LPCEP and FFTCEP with different vector sizes and
optimal choices for both the BLT coefficient and preemphasis.

The statistical behaviour of the parameters should also be considered when choosing

among several spectral analysis procedures, because of its influence in the modelling

approach [Nocerino, 85][Shikano, 86][Tohkura, 87]. The computation of the variance for

each component was also needed to re-scale the energy before adding it to the vector of

parameters. Figure 3 represents the mean and the variance of each component of BFBCEP,

LPCEP and FFTCEP. In all the cases the variance decreased quickly to a low value, and the

mean tended to be slightly negative. Only a few components, approximately six, had a

significant variance. This could explain the lack of improvement introduced in the

recognition rates by the last components of the vectors. It seems that the higher the variances

of the last components, the larger the improvement introduced in the recognition rates. On the

other hand, first components are primarily affected by the analysis method. This could

explain the different recognition rates obtained by each parameter vector.
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Figure 3. Mean and standard deviation of the vectors BFBCEP, LPCEP and FFTCEP.

Concluding remarks-.

The experiments carried out in this work confirm the cepstral coefficients as the best

choice to represent speech signals in speech recognition tasks. These coefficients were

obtained through FT and LP analysis, with the first method leading to better system

performance. Introducing the Bark scale in the computation of the filter bank coefficients and

the bilinear transformation in the computation of both the LP and the FFT based cepstral

coefficients increased the recognition rates, but particularly in the first case, where BFBCEP

provided the best system performance.

Preemphasis improved the performance of LPCEP but produced lower rates in Bark-

scaled filter bank parameters, and did not affect FFTCEP. The choice of the best parametric

representation depends on the vector length (L): LPCEP would be clearly the choice for L=6

and L=8, and BFBCEP the choice for L=10 and L=12. Adding log-energy, with variance

equal to the maximum variance of the vector of parameters, also significantly improved the

recognition rates.

Some experiments with the first and second derivatives should be done to complete this

work. The components could be weighted with liftering windows [Tohkura, 87] [Segura, 91],

and the performance tested for several lengths of the vector. At present we are testing some of

these parameters in acoustic-phonetic decoding experiments, where sublexical units are

modelled using hidden Markov models.
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