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ABSTRACT
This paper presents a new system for the continuous
speech recognition of Spanish, integrating previous
works in the fields of acoustic-phonetic decoding and
language modelling. Acoustic and language models -
separately trained with speech and text samples,
respectively- are integrated into one single automaton,
and their probabilities combined according to a standard
beam search procedure. Two key issues were to
adequately adjust the beam parameter and the weight
affecting the language model probabilities. For the
implementation, a client-server arquitecture was selected,
due to the desirable working scene where one or more
simple machines in the client side make the speech
analysis task, and a more powerful workstation in the
server side looks for the best sentence hypotheses.
Preliminary experimentation gives promising results
with around 90% word recognition rates in a medium
size word speech recognition task1.
Keywords: Continuous Speech Recognition, Decision
Trees, k-TSS Language Models: Syntactical Approaches
to Language Modelling, Client-Server Arquitecture.

1. INTRODUCTION
This paper describes a new Continous Speech
Recognition (CSR) System for medium size Spanish
tasks integrated into a client/server architecture. The
main original features of the system are:

- Context Dependent Units obtained by applying
decision trees for Spanish recognition tasks.
- A syntactic approach of the well-known n-gram
models, the K-TLSS Language Models [1], fully
integrated in the recognition system.
- A linear organization of the lexicon fully
compatible with the search strategy.
- A client/server architecture where the main
search network is implemented as server and the
acoustic front-end works independently in one or
more clients.

Other features of the system include some state-of-the-art
speech recognition technologies: robust speech signal
analysis, HMM acoustic models, beam-search and
(optionally) fast phoneme look ahead algorithms.

                                                
1 This work has been partially supported by the Spanish
CICYT, under project TIC95-0884-C04-03.

The CSR System was evaluated over a task oriented
speech corpus representing a set of queries to a Spanish
geography database. This is a specific task designed to
test integrated systems (involving acoustic, syntactic and
semantic models) in automatic speech understanding.
The paper is organized as follows: Section 2 summarizes
the speech analysis procedure and the acoustic models.
In Section 3 language modelling and search strategy are
outlined. Section 4 describes the client/server system
architecture. Finally, some preliminary results for the
evaluation of the CSR system are presented in Section 5.

2. ACOUSTIC-PHONETIC MODELLING
Speech analysis -as suggested by [2]- is made by
following conventions of the Entropic Hidden Markov
Modeling Toolkit (HTK) [3], with some minor changes.
Speech -acquired typically through a headset condenser
microphone- is sampled at 16 kHz, each sample having
16 bit precision. Speech samples are grouped into
successive frames and passed through a Hamming
window. Frame length is 25 ms and inter-frame distance
10 ms. A filter bank formed by 24 triangular filters with
increasing widths according to mel-frequency scale, is
applied to a 512-point FFT, producing 24 spectral
weighted mean values. A discrete cosine transform
applied to these coefficients decorrelates the spectral
envelope from other characteristics not relevant for
recognition, producing 12 mel-frequency cepstral
coefficients (MFCC). Cepstral mean normalization and
liftering are then applied to compensate for channel
distortion and speaker characteristics. The normalized
logarithm of the energy is also computed. Finally,
dynamic characteristics (first and second derivatives) are
added to the MFCC and log-energy parameters,
obtaining a 39-component acoustic observation vector.
As usual when dealing with medium to large size
vocabularies, sublexical units were used as the basic
speech units. Three different sets were defined. The first
and simpler one contained 24 phone-like units,
including a single model for silence. The second one
was a mixture of 103 trainable (e.g. with enough training
samples) monophones, diphones and triphones, as
described in [4]. The well known technique of decision
tree clustering [5] was applied to obtain a third optimal
set of 101 trainable, discriminative and generalized
context dependent units. An additional set of border
units was specifically trained to generate lexical
baseforms, covering all possible intraword contexts and
being context independent to the outside. We are
currently working in generating a more general set of



inter and intraword context dependent units, and a first
approach was made to evaluate their contribution to the
recognition process (see Section 5). To deal with
multiple codebook observations, as was the case in our
baseline system, a simple and not very expensive
discriminative function, combining probabilities from all
the codebooks, was used. The set of decision tree based
context dependent units gave the best results in acoustic-
phonetic decoding experiments and also when building
word models for a more reliable test, as will be shown in
Section 5.
Discrete Left-to-Right Hidden Markov Models with 3
looped states and 4 discrete observation distributions per
state, were used as acoustic models. Emision and
transition probabilities were estimated using both the
Baum-Welch and Viterbi procedures, applying the
Maximum Likelihood criterion.
To deal with discrete acoustic models, a standard Vector
Quantization procedure was applied, obtaining four
different codebooks, each containing 256 centroids,
corresponding to MFCCs, first derivatives of MFCCs,
second derivatives of MFCCs and a 3-component vector
formed by log-energy, first and second derivatives of log-
energy. During recognition, each parameter subvector is
assigned the nearest centroid index and a four index tag
is passed as acoustic observation to the search
automaton.

3. LANGUAGE MODELLING AND
SEARCH STRATEGY

A syntactic approach of the well known n-grams models,
the K-Testable Languages in the Strict Sense (K-TLSS)
[1] was used. The use of K-TLSS regular grammars
allowed to obtain a deterministic, and hence
unambigous, Stochastic Finite State Automaton (SFSA)
integrating a number of K-TLSS models in a self-
contained model [6]. Then a syntactic back-off
smoothing technique was applied to the SFSA to
consider unseen events [7]. This formulation strongly
reduced the number of parameters to be handled and led
to a very compact representation of the model parameters
learned at training time. Thus the Smoothed SFSA was
efficiently allocated in a simple array of an adequate size.
Although words have been used as basic units in our
baseline system, some other alternative lexical units,
statistically derived from the training text, have been
studied, yielding sifgnificative improvements in terms of
model complexity and performance, and could replace
words in a later implementation.
Lexical baseforms are linearly represented. Each word is
transcribed as the concatenation of sublexical units,
taking into account only intraword contexts. Word
nodes are expanded with the corresponding concatenation
of previously trained acoustic models, and one single
automaton results with both acoustic and syntactic
probabilities.
The time-synchronous Viterbi decoding algorithm is
used at parsing time: a simple search function through
the array representing the Language Model allows to
directly obtain the next state of the SFSA needed at each

decoding time. After some preliminary experimentation,
a kind of balance between acoustic and syntactic
probabilities was found necessary in the search
automaton. A weight α  affecting the Language Model
probabilities was heuristically optimized. Then a beam
threshold is established and (optionally) a fast phoneme
look ahead algorithm is included to reduce the average
size of the search network.

4. SYSTEM ARQUITECTURE
The system design is based on a distributed, client-
server arquitecture. The server is the main program, as it
includes the search module. On the other hand, although
the more apparent part of the client application is the
graphical user interface, it also acquires the audio signal
and does the preprocessing (i.e. the edge detection) and
the acoustic feature extraction. By means of the graphical
interface, which is based on Tcl/Tk [8], the user controls
the whole system and gets feedback in the form of
detailed messages. The client and server programs may
run on different computers attached to a network. Both
are highly parallelized through POSIX threads: for
example, GUI, audio acquisition and feature extraction
are three separate threads of the client program. Figure 1
outlines the main characteristics of the system
arquitecture.
This distributed, parallelized arquitecture makes possible
to get the maximum performance from modern computer
hardware such as networked multiprocessor systems.
Clearly, the client application must run on a computer
provided with a graphic display and audio hardware; the
CPU power is not important. However, the server
application should run on a computer with a faster CPU
or more CPUs; by contrast, graphics and audio
capabilities are not needed in this case. Obviously, both
client and server applications may also run on the same
computer.
While the system is running, the audio signal is being
acquired continuously but not processed when signal
energy is low (silence condition). Whenever a spoken
sentence (or some long emphatic sound) is detected,
audio data are given to the acoustic feature extraction
module. Then a vector composed of the signal features is
sent to the server, which adds it to a queue. Another
server thread is continuously processing this queue,
doing the main job. The server is also provided with an
optional VQ module working only when discrete
acoustic models are especified, as in our baseline system.
Control and configuration messages may be sent at any
time from the client to the server using an independent
bidirectional communication channel. The same channel
may be used by the server for sending messages to the
client, which in turn displays them to the user.



5. EXPERIMENTAL EVALUATION
All the parts of the system were carefully tested and
optimized before integrating them. From the audio
acquisition module to the search module, separate
evaluations were made. Here we present only two of
them, reflecting our current research interests: the
selection of an adequate set of sublexical units for
acoustic modelling, and the integration of acoustic and
language models into one single search automaton.

5.1. Evaluating sublexical units
As mentioned above, three different sets of sublexical
units were tested: 24 context independent phone-like
units, a mixture of 103 monophones, diphones and
triphones, and 101 decision tree based generalized
context dependent units. An acoustic-phonetic decoding
task was used as benchmark, having a balanced phonetic
database both for training and testing purposes. The
training corpus was composed of 1529 sentences,
involving around 60000 phones. A speaker independent
test was applied, containing 700 sentences. Discrete
HMMs with 4 codebooks were used as acoustic models.
No phonological model was used in these experiments.
Table I shows phone recognition rates. Context
independent phone-like units gave significative lower
rates (around two points) than the two other sets of
context dependent units, which in turn showed similar
performances.
However, a more reliable test seems necessary to decide
which set of units is more suitable, by building lexical
baseforms and obtaining word recognition rates. Two
different procedures have been used to obtain lexical
baseforms, both considering words as isolated. In the
first one, called TR1, border units are selected to be
context independent both sides. In the second one, called
TR2, border units are selected to be context dependent
in the word side and context independent in the outside.
Another transcription procedure, called TR3, was used
to test the contribution of modelling interword contexts

to speech recognition. TR3 takes into account the
interword contexts appearing in the test database to
obtain lexical baseforms of words.

Table I. Phone recognition rates for a phonetic-decoding
task in Spanish, using three different sets of sublexical
units.

Type of unit # units % REC

CI phone-like 24 63.97
Mixture (Mph, Dph,

Tph)
103 65.90

DT-based 101 66.44

Table II shows word recognition rates using these
transcription procedures, in a speech recognition task
with no language model. Only the baseforms of the 203
words found in the test database were used to run the
alignment procedure, so a closed test was carried out.
Word recognition rates show that TR2 works better than
TR1 -as may be expected. However, TR3 gave the best
performance, showing the importance of modelling
interword contexts. Finally, note that DT-based context
dependent units outperform the two other sets of units.

Table II. Word recognition rates for a speech recognition
task in Spanish, using three different sets of sublexical units
and three different transcription procedures.

% Word Recognition
Type of unit TR1 TR2 TR3

CI phone-like 49.83 -
Mixture (Mph, Dph, Tph) - 51.16 56.73

DT-based 52.86 53.26 58.01

5.2. Evaluating the search procedure
Not only the parameter α  weighting syntactic
probabilities over acoustic probabilities must be
optimized, but also the beam parameter. Actually, both
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should be optimized jointly, but we first heuristically
found an optimum α  and then an optimum beam. The
beam is a key issue to reach real-time operation, because
a balance must be found between system accuracy and
computation time.
At any time, each possible transition from each active
node in the search network has an acoustic probability
and possibly also a syntactic probability, which are
multiplied by the accumulated probability at the
departure node, and assigned as accumulated probability
to the arrival node. To obtain the set of active nodes at
that time, the beam parameter must be applied to discard
all nodes whose accumulated probability falls below
certain threshold, thus drastically reducing the size of the
search network. This threshold is usually obtained by
multiplying the beam parameter by the maximum
accumulated probability at that time.
Once again discrete HMMs with 4 codebooks were used
as acoustic models. Context independent phone-like
units were used as sublexical units, and lexical
baseforms were generated by applying TR1. K-TLSS
models were used for Language Modelling, trained with
a task-oriented text containing 8262 sentences, for
several values of k. The task, a set of queries to a
Spanish geography database, had a vocabulary of 1213
words. For testing purposes, an independent but fully
covered text containing 600 sentences was used. Table
III shows system performance for values of k=2,3,4,
beam=0.67, 0.55, 0.45, and fixed α=6.

Table III. System performance for different values of k and
beam, and fixed α=6. Significative measures are showed:
average number of active nodes (#AN average), average
processing time per frame (PTF average, in milliseconds),
word recognition rate (%W) and sentence recognition rate
(%S).

k beam #AN
average

PTF
average

(ms)

%W %S

0.67 40.13 3.80 68.58 29.17
2 0.55 218.21 11.75 84.05 41.67

0.45 858.51 33.42 85.19 44.17

0.67 32.24 3.30 70.48 36.33
3 0.55 179.01 10.96 89.15 56.00

0.45 800.52 36.67 90.35 57.50

0.67 31.50 3.38 71.36 45.00
4 0.55 177.99 11.24 89.78 59.00

0.45 808.30 38.19 91.42 61.50

Computational resources required by the system
(processing time and memory, i. e. the number of active
nodes) reduce drastically as the beam narrows, while
system accuracy remains quite good, especially for k=4.
Note that only the more constrained search (with
beam=0.67) fullfils the condition of real-time operation
(i.e. average processing time per frame less than 10
milliseconds).

6. CONCLUSION
In this paper a new CSR System for medium size
Spanish tasks was presented. State-of-the-art speech
recognition technologies, including Discrete HMMs and
K-TLSS models, were integrated into a client/server
architecture, where the main search module -a time-
synchronous Viterbi alignment provided with beam
search and fast phoneme look ahead algorithms- was
implemented as a server, and the acoustic front-end was
part of the client application.
Future work includes programming a client application
for PCs, expanding the currently available client,
designed for Silicon Graphics and Sun workstations, to
more common platforms; the use of decision tree based
context dependent sublexical units, instead of context
independent phone-like units, to form lexical baseforms
incorporating interword context modelling; the use of
alternative lexical units replacing words; the use of more
accurate acoustic models, and finally improving the
search module to fully acomplish real-time operation
with good system accuracy.
This work is part of a greater CSR project jointly
developed with three other spanish universities:
Universidad Polit�cnica de Valencia, Universidad
Polit�cnica de Catalu�a and Universidad de Zaragoza.
Here we would like to thank all the help and advise
obtained from them.
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