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Abstract
This paper describes the systems developed by GTTS-EHU for
the QbE-STD and STD tasks of the Albayzin 2018 Search on
Speech Evaluation. Stacked bottleneck features (sBNF) are
used as frame-level acoustic representation for both audio doc-
uments and spoken queries. In QbE-STD, a flavour of segmen-
tal DTW (originally developed for MediaEval 2013) is used
to perform the search, which iteratively finds the match that
minimizes the average distance between two test-normalized
sBNF vectors, until either a maximum number of hits is ob-
tained or the score does not attain a given threshold. The STD
task is performed by synthesizing spoken queries (using pub-
licly available TTS APIs), then averaging their sBNF represen-
tations and using the average query for QbE-STD. A publicly
available toolkit (developed by BUT/Phonexia) has been used
to extract three sBNF sets, trained for English monophone and
triphone state posteriors (contrastive systems 3 and 4) and for
multilingual triphone posteriors (contrastive system 2), respec-
tively. The concatenation of the three sBNF sets has been also
tested (contrastive system 1). The primary system consists of a
discriminative fusion of the four contrastive systems. Detection
scores are normalized on a query-by-query basis (qnorm), cal-
ibrated and, if two or more systems are considered, fused with
other scores. Calibration and fusion parameters are discrimi-
natively estimated using the ground truth of development data.
Finally, due to a lack of robustness in calibration, Yes/No deci-
sions are made by applying the MTWV thresholds obtained for
the development sets, except for the COREMAH test set. In this
case, calibration is based on the MAVIR corpus, and the 15%
highest scores are taken as positive (Yes) detections.

Index Terms: Spoken Term Detection, Query-by-Example
Spoken Term Detection, Bottleneck features, Dynamic Time
Warping

1. Introduction
The main goal of the participation of GTTS in the Albayzin
2018 Search on Speech Evaluation was to upgrade the QbE-
STD systems that we developed for MediaEval 2013 and 2014
[1] [2] by: (1) using an external VAD module; (2) replacing
phonetic posteriors by bottleneck features as frame-level fea-
tures (which might imply changing some aspects of the method-
ology); and (3) handling the case of no development data by
applying cross-condition calibration and heuristic thresholding.
Also, as a proof-of-concept attempt to overcome the issue of
OOV words, we have developed STD systems by applying pub-
lic TTS APIs to synthesize a number of spoken instances of
each term, then computing an average query (following the ap-
proach developed for MediaEval 2013 [3]) and using it to per-
form QbE-STD.

QbE-STD results on development data reveal that calibra-
tion models are not well estimated, probably due to a lack of de-

tections for target trials. In particular, the threshold given by the
application model parameters (Ptarget = 0.0001, Cmiss = 1
and Cfa = 0.1) is too high compared to the MTWV threshold.

In the case of STD, the lack of detections is even more re-
markable, with Pmiss ≈ 0.8 for extremely low thresholds. This
could be due to an acoustic mismatch between the synthesized
queries and the test audio signals, which might be blocking the
DTW-based search, since the score yielded by the best match
would fall below the established threshold. The low amount of
detections (especially, for target trials) not only yields high miss
error rates but also makes the calibration model to be poorly es-
timated. This may explain why the MTWV threshold for STD
scores on development data is much lower that that provided by
the application model.

In both cases (QbE-STD and STD), the parameters of the
DTW-based search should be further tuned in order to get a
larger amount of target and non-target detections.

2. QbE-STD systems
In the design of our previous QbE-STD systems, the front-
end exploited existing software (e.g. the BUT phone decoders
for Czech, Hungarian and Russian [4]), whereas the backend
(search, calibration and fusion) was almost entirely developed
by our group (and collaborators) [3][5]. For this evaluation, we
have applied an external VAD module and extracted a new set
of frame-level features.

2.1. Voice Activity Detection (VAD)

In our previous QbE-STD systems, VAD was performed by us-
ing the posteriors provided BUT phone decoders: first, the pos-
teriors of non-phonetic units were added; then, if this aggre-
gated non-phonetic posterior was higher than any other (pho-
netic) posterior, the frame was labeled as non-speech; otherwise
it was labeled as speech. In this evaluation, we are not using
posteriors anymore, so we cannot apply the same procedure.
Instead, we apply the Python interface to a VAD module devel-
oped by Google for the WebRTC project [6], based on Gaussian
distributions of speech and non-speech features. Given an au-
dio file, our VAD module produces two output files: the first
one (required by the feature extraction module) is an HTK .lab
file specifying speech and non-speech segments, whereas the
second one (used by the search procedure) is a text file (.txt)
containing a sequence of 1’s and 0’s (one per line) indicating
speech/non-speech frames.

2.2. Bottleneck features

We have updated the feature extraction module of our previous
QbE-STD systems with the stacked botteneck features (sBNF)
recently presented by BUT/Phonexia [7]. Actually, three differ-
ent neural networks are applied, each one trained to classify a
different set of acoustic units and later optimized to language
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recognition tasks. The first network was trained on telephone
speech (8 kHz) from the English Fisher corpus [8] with 120
monophone state targets (FisherMono); the second one was also
trained on the Fisher corpus but with 2423 triphone tied-state
targets (FisherTri); the third network was trained on telephone
speech (8 kHz) in 17 languages taken from the IARPA Babel
program [9], with 3096 stacked monophone state targets for the
17 languages involved (BabelMulti).

The architecture of these networks consists of two stages.
The first one is a standard bottleneck network fed with low-
level acoustic features spanning 10 frames (100 ms), the bottle-
neck size being 80. The second stage takes as input five equally
spaced BNFs of the first stage, spanning 31 frames (310 ms),
and is trained on the same targets as the first stage, with the
same bottleneck size (80). The bottleneck features extracted
from the second stage are known as stacked bottleneck features
(sBNF). Alternatively, instead of sBNF, the extractor can output
target posteriors.

The operation of BUT/Phonexia sBNF extractors requires
an external VAD module providing speech/non-speech informa-
tion through an HTK .lab file. If no external VAD is provided, a
simple energy-based VAD is computed internally. In this eval-
uation, we have applied the WebRTC VAD described above.

Our first aim was to replace old BUT by new BUT/Phonexia
posteriors, but the huge size of FisherTri (2423) and BabelMulti
(3096) targets required some kind of selection, clustering or
dimensionality reduction approach. So, given that —at least
theoretically— the same information is conveyed by sBNF’s,
with a suitably low dimensionality (80), we decided to switch
from posteriors to sBNF’s. We were aware that this change may
make us pay a high price. Posteriors have a clear meaning, they
can be linearly combined and their values suitably fall within
the range [0,1], which makes the − log cos(α) distance also
range in [0,1] (α being the angle between two vectors of pos-
teriors), with very good results reported in our previous works.
On the other hand, bottleneck layer activations have no clear
meaning, we don’t really know if they can be linearly combined
(e.g for computing an average query from multiple query in-
stances), and their values are unbounded, so the − log cos(α)
distance does no longer apply. Is there any other distance work-
ing fine with sBNF? This evaluation poses a great opportunity
to address these issues.

2.3. DTW-based search

To perform the search of spoken queries in audio documents,
we basically follow the DTW-based approach presented in [3].
In the following, we summarize the approach and the modifica-
tions introduced for this evaluation.

Given two sequences of sBNF’s corresponding to a spo-
ken query and an audio document, we first apply VAD to dis-
card non-speech frames, but keeping the timestamp of each
frame. To avoid memory issues, audio documents are splitted
into chunks of 5 minutes, overlapped 5 seconds, and processed
independently. This chunking process is key to the speed and
feasibility of the search procedure.

Let us consider the VAD-filtered sequences corresponding
to a query q = (q[1], q[2], . . . , q[m]) and an audio document
x = (x[1], x[2], . . . , x[n]), of length m and n, respectively.
Since sBNF’s (theoretically) range from −∞ to +∞, we de-
fine the distance between any pair of vectors, q[i] and x[j], as
follows:

d(q[i], x[j]) = − log

(
1 +

q[i] · x[j]

|q[i]| · |x[j]|

)
+ log 2 (1)

Note that d(v, w) ≥ 0, with d(v, w) = 0 if and only if v and w
are aligned and pointing in the same direction, and d(v, w) =
+∞ if and only if v and w are aligned and pointing in opposite
directions.

The distance matrix computed according to Eq. 1 is nor-
malized with regard to the audio document x, as follows:

dnorm(q[i], x[j]) =
d(q[i], x[j])− dmin(i)

dmax(i)− dmin(i)
(2)

where:
dmin(i) = min

j=1,...,n
d(q[i], x[j]) (3)

dmax(i) = max
j=1,...,n

d(q[i], x[j]) (4)

In this way, matrix values are in the range [0, 1] and a per-
fect match would produce a quasi-diagonal sequence of zeroes.
This can be seen as test nomalization since, given a query q,
distance matrices take values in the same range (and with the
same relative meaning), no matter the acoustic conditions, the
speaker, etc. of the audio document x.

Note that the chunking process described above makes the
normalization procedure differ from that applied in [3], since
dmin(i) and dmax(i) are not computed for the whole audio
document but for each chunk independently. On the other hand,
considering chunks of 5 minutes might be beneficial, since nor-
malization is performed in a more local fashion, that is, more
suited to the speaker(s) and acoustic conditions of each particu-
lar chunk.

The best match of a query q of length m in an audio doc-
ument x of length n is defined as that minimizing the average
distance in a crossing path of the matrix dnorm. A crossing
path starts at any given frame of x, k1 ∈ [1, n], then traverses
a region of x which is optimally aligned to q (involving L vec-
tor alignments), and ends at frame k2 ∈ [k1, n]. The average
distance in this crossing path is:

davg(q, x) =
1

L

L∑

l=1

dnorm(q[il], x[jl]) (5)

where il and jl are the indices of the vectors of q and x in the
alignment l, for l = 1, 2, . . . , L. Note that i1 = 1, iL = m,
j1 = k1 and jL = k2. The optimization procedure is Θ(n·m·d)
in time (d: size of feature vectors) and Θ(n ·m) in space. For
details, we refer to [3].

The detection score is computed as 1 − davg(q, x), thus
ranging from 0 to 1, being 1 only for a perfect match. The
starting time and the duration of each detection are obtained by
retrieving the time offsets corresponding to frames k1 and k2 in
the VAD-filtered audio document.

This procedure is iteratively applied to find not only the best
match but also less likely matches in the same audio document.
To that end, a queue of search intervals is defined and initialized
with [1, n]. Let us consider an interval [a, b], and assume that
the best match is found at [a′, b′], then the intervals [a, a′ − 1]
and [b′ + 1, b] are added to the queue (for further processing)
only if the following conditions are satisfied: (1) the score of
the current match is greater than a given threshold T (in this
evaluation, T = 0.85); (2) the interval is long enough (in this
evaluation, half the query length: m/2); and (3) the number of
matches (those already found + those waiting in the queue) is
less than a given threshold M (in this evaluation, M = 7). An
example is shown in Figure 1. Finally, the list of matches for
each query is ranked according to the scores and truncated to
the N highest scores (in this evaluation, N = 1000, though it
effectively applied only in a few cases).
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Normalized
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Figure 1: Example of the iterative DTW procedure: (1) the best match of q in x[1, n] is located in x[k1, k2]; (2) since the score is greater
than the established threshold T , the search continues in the surrounding segments x[1, k1 − 1] and x[k2 + 1, n]; (3) x[k2 + 1, n] is
not searched, because it is too short; (4) the best match of q in x[1, k1 − 1] is located in x[k3, k4]; (5) but its score is lower than T , so
the surrounding segments x[1, k3 − 1] and x[k4 + 1, k1 − 1] are not searched. The search procedure outputs the segments x[k1, k2]
and x[k3, k4].

2.4. Calibration and fusion of system scores

The scores produced by our systems are transformed according
to a discriminative calibration/fusion approach commonly ap-
plied in speaker and language recognition, that we adapted to
STD tasks for MediaEval 2013, in collaboration with Alberto
Abad, from L2F, the Spoken Language Systems Laboratory,
INESC-ID Lisboa. In the following paragraphs, we just sum-
marize the procedure. For further details, see [5].

First, the so-called q-norm (query normalization) is ap-
plied, so that zero-mean and unit-variance scores are obtained
per query. Then, if n different systems are fused, detections
are aligned so that only those supported by k or more systems
(1 ≤ k ≤ n) are retained for further processing (in this eval-
uation, we use k = 2). To build the full set of trials (potential
detections) we assume a rate of 1 trial per second (which is con-
sistent with the evaluation script). Now, let us consider one of
those detections of a query q supported by at least k systems,
and a system A that did not provide a score for it. There could
be different ways to fill up this hole. We use the minimum score
that A has output for query q in other trials. In fact, the min-
imum score for the query q is hypothesized for all target and
non-target trials of query q for which system A has not output
a detection score. When a single system is considered (n = 1),
the majority voting scheme is skipped but qnorm and the fill-
ing up of missing scores are still applied. In this way, a com-
plete set of scores is prepared, which besides the ground truth
(target/non-target labels) for a development set of queries, can
be used to discriminatively estimate a linear transformation that
will hopefully produce well-calibrated scores.

The calibration/fusion model is estimated on the develop-
ment set and then applied to both the development and test
sets, using the BOSARIS toolkit [10][11]. Under this ap-
proach, the Bayes optimal threshold, given the effective prior
(in this evaluation, P̂target = CmissPtarget/(CmissPtarget +
Cfa(1 − Ptarget)) = 0.001), would be applied and —at least
theoretically— no further tunings would be necessary. In prac-
tice, however, if a system yielded a small amount of detections,
we would be using hypothesized scores for most of the trials.

As a result, the calibration/fusion model would be poorly esti-
mated and the Bayes optimal threshold (in this evaluation, 6.9)
would not produce good results.

3. STD systems
In this evaluation, we have exploited some publicly available
Text-to-Speech (TTS) API’s to perform text-in-audio search as
audio-in-audio search. This is just a proof-of-concept aimed at
overcoming the Out-Of-Vocabulary (OOV) word issue.

We have applied the Google TTS (gTTS) Python library
and command-line interface (CLI) tool [12], which provides
two different female (es-ES and es-US) voices, and the Cocoa
interface to speech synthesis in MacOS [13], which provides 5
different voices (three male, two female) including both Euro-
pean and American Spanish.

In this way, for each textual term, we synthesize 7 spoken
queries: q1, q2, . . . , q7. These spoken queries are downsampled
to 8 kHz and applied VAD and sBNF extraction as described
in Sections 2.1 and 2.2. The longest query is then taken as
reference and optimally aligned to the other queries by means
of a standard DTW procedure. Let us consider the sequence
of VAD-filtered sBNF vectors for the reference query: ql of
length ml, and the sequence corresponding to another synthe-
sized query: qi of length mi. The alignment starts at [1, 1] and
ends at [ml,mi] and involves L alignments, such that each fea-
ture vector of ql is aligned to a sequence of vectors of qi. This
is repeated for all the synthesized queries, such that we end up
with a set of feature vectors Sj aligned to each feature vector
ql[j], for j = 1, 2, . . . ,ml. Then, each ql[j] is averaged with
the feature vectors in Sj to get a single average query, as fol-
lows:

qavg[j] =
1

1 + |Sj |


ql[j] +

∑

v∈Sj

v


 j = 1, 2, . . . ,ml

(6)
Finally, the average query obtained in this way is used to

search for occurrences in the audio documents, just in the same
way (using the same configuration) as we do in the QbE-STD
task.
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4. Experimental setup and results
Since BUT/Phonexia sBNF extractors operate on 8 kHz signals,
all the query and test audio signals have been downsampled to
8 kHz and stored as 16 bit little-endian signed-integer single-
channel WAV files. Audio conversion was performed under
MacOS, using the following command:

afconvert audio.<ext> -o audio_8k.wav
-d LEI16@8000 -c 1 -f WAVE

where <ext> represents any audio format extension (such as
mp3, aac, wav, etc.).

Two different datasets have been provided for training and
development of QbE-STD and STD systems in the Albayzin
2018 Search on Speech Evaluation [14]: MAVIR [15] and
RTVE [16]. We have not used the training dataset at all, nor
the dev1 set of RTVE. Only the dev set of MAVIR and the dev2
set of RTVE have been used to estimate the calibration/fusion
models, and later to search for query occurrences. Search has
been also performed on the test sets: COREMAH [17], MAVIR
and RTVE, applying the calibration/fusion models and the opti-
mal (MTWV) thresholds obtained on development. In the case
of COREMAH (for which no development data was provided),
MAVIR calibration/fusion models have been used and heuristic
thresholding has been applied, by making Yes decisions for the
15% of detections with the highest scores.

One primary (pri) and four contrastive (con1, con2, con3
and con4) systems have ben submitted to each combination
of task (QbE-STD, STD), condition (development, test) and
dataset (COREMAH, MAVIR, RTVE). BabelMulti, Fisher-
Mono and FisherTri sBNF’s were used for contrastive systems
2, 3 and 4, respectively. The concatenation of the three sBNF’s
(with 80 × 3 = 240 dimensions) was used as acoustic repre-
sentation for contrastive system 1. Finally, the primary system
was obtained as the discriminative fusion of the four contrastive
systems.

Tables 1 and 2 show ATWV/MTWV performance of the 5
GTTS-EHU systems on the development sets of MAVIR and
RTVE for the QbE-STD and STD tasks, respectively. In all
cases, ATWV is obtained for the Bayes optimal threshold (6.9).
Along with the MTWV score, the MTWV threshold is shown
too (in parentheses). As noted above, the systems eventually
submitted for MAVIR and RTVE (in all tasks and conditions)
were applied the MTWV threshold.

Table 1: ATWV/MTWV performance on the development sets
of MAVIR and RTVE for the QbE-STD systems submitted by
GTTS-EHU. The ATWV threshold is set to 6.9. Along with the
MTWV score, the MTWV threshold is shown in parentheses.

MAVIR RTVE
MTWV (Thr) ATWV MTWV (Thr) ATWV

con2 0.1291 (4.06) 0.0000 0.4893 (4.75) 0.0097
con3 0.1327 (4.12) 0.0000 0.5722 (5.14) 0.0802
con4 0.1590 (4.09) 0.0000 0.5227 (5.09) 0.0437
con1 0.1278 (4.14) 0.0000 0.5159 (5.13) 0.0421
pri 0.1577 (4.59) 0.0000 0.5352 (5.69) 0.3043

Table 2: ATWV/MTWV performance on the development sets
of MAVIR and RTVE for the STD systems submitted by GTTS-
EHU. The ATWV threshold is set to 6.9. Along with the MTWV
score, the MTWV threshold is shown in parentheses.

MAVIR RTVE
MTWV (Thr) ATWV MTWV (Thr) ATWV

con2 0.0396 (5.12) 0.0000 0.0933 (5.30) 0.0026
con3 0.0463 (4.82) 0.0000 0.0951 (4.80) 0.0000
con4 0.0512 (4.31) 0.0000 0.0916 (4.98) 0.0000
con1 0.0398 (5.28) 0.0000 0.0843 (5.21) 0.0000
pri 0.0464 (5.43) 0.0000 0.0809 (5.91) 0.0265

5. Conclusions and future work
The QbE-STD and STD results obtained by our systems on the
development sets of MAVIR and RTVE may indicate that the
search procedure is detecting few occurrences of the queries,
yielding high miss error rates and making it difficult the esti-
mation of good (robust) calibration/fusion models, since most
of the trials are missing from system output and we have to hy-
pothesize scores for them. To get a larger amount of target and
non-target detections, three of the parameters of the DTW-based
search must be relaxed: the maximum amountM of hits per au-
dio chunk (currently,M = 7), the minimum score T required to
keep searching (currently, T = 0.85) and the maximum number
N of detections per query for the whole set of audios (currently,
N = 1000).

QbE-STD detection scores, though badly calibrated, seem
to work fine for RTVE but not so well for MAVIR. The differ-
ence in performance might be related to a higher acoustic vari-
ability or more adverse conditions (reverberation, noise, etc.)
for MAVIR.

The trick of synthesizing spoken queries from textual terms
to perform STD as QbE-STD seems to be failing, with two
possible causes: (1) an acoustic mismatch between the synthe-
sized queries and the test audios might lead to low scores and
block the iterative DTW detection procedure; and (2) the use of
bottleneck layer activations as frame-level acoustic representa-
tion might be incompatible with the query averaging procedure
(which worked fine with phone posteriors).

Future developments may involve some sort of data aug-
mentation in QbE-STD, such as the use of pseudo-relevance
feedback, that is, the use of top matching query occurrences
as additional examples. Also, though query averaging is com-
putationally cheap, using it with sBNF representations might
be unfeasible and other more expensive strategies to take ad-
vantage of the synthesized queries should be explored, such as
carrying out multiple searches and fusing the results [18]. Alter-
natively, we could return to posteriors, by combining the high-
dimensional sets of posteriors provided by BUT/Phonexia net-
works with some sort of feature clustering or feature selection
approach.
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