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Abstract
This paper briefly describes the language recognition systems
developed for the 2011 NIST Language Recognition Evalua-
tion (LRE) by the BLZ (Bilbao-Lisboa-Zaragoza) team, a three-
site joint including GTTS from the University of the Basque
Country (Spain), L2F (Spoken Language Systems Lab) from
INESC-ID Lisboa (Portugal) and I3A from the University of
Zaragoza (Spain). The primary system fuses 8 (3 acoustic +
5 phonotactic) subsystems: a Linearized Eigenchannel GMM
(LE-GMM) subsystem, a JFA subsystem, an iVector subsys-
tem, three Phone-SVM subsystems using the Brno University
of Technology phone decoders for Czech, Hungarian and Rus-
sian, and two Phone-SVM subsystems using the L2F phone
decoders for European Portuguese and Brazilian Portuguese.
Gaussian backends and multiclass fusion have been applied to
get the final scores. Three contrastive systems have been also
submitted, featuring: (1) the fusion of the whole set of 13 (6
acoustic + 7 phonotactic) subsystems; (2) the fusion of 3 sub-
systems, for the combination of one subsystem per site yielding
the best performance on development data; and (3) the fusion
of the same 8 subsystems used in the primary system under a
different configuration.

1. Introduction
BLZ (Bilbao-Lisboa-Zaragoza) is a three-site team including
GTTS from the University of the Basque Country (Spain), L2F
(Spoken Language Systems Lab) from INESC-ID Lisboa (Por-
tugal) and I3A from the University of Zaragoza (Spain). The
three sites have made their own submissions to 2011 NIST LRE,
including a larger set of subsystems [1, 2, 3]. The motivation
for a joint submission was the potential of fusing subsystems
based on different approaches or trained on different datasets.
Sometimes, two identical systems trained on different data com-
plement each other surprisingly well. The collaboration has
focused on collecting and sharing data for the 9 newly added
target languages, and on defining a common development set
to allow the estimation of backend and fusion parameters on
independent data (i.e. not used to train models). The FoCal
and Bosaris toolkits [4, 5] have been used to estimate and ap-
ply common backend and fusion approaches, and to evaluate
recognition performance for the development of systems.

The BLZ submission to the 2011 NIST LRE includes one
primary and three contrastive systems, combining multi-site
acoustic and phonotactic subsystems under four different con-
figurations. The primary system fuses 8 (3 acoustic + 5 phono-
tactic) subsystems: a Linearized Eigenchannel GMM (LE-
GMM) subsystem, a JFA subsystem, an iVector subsystem,
three Phone-SVM subsystems using the Brno University of

Technology (BUT) phone decoders for Czech, Hungarian and
Russian, and two Phone-SVM subsystems using the L2F phone
decoders for European Portuguese and Brazilian Portuguese.
Gaussian backends and multiclass fusion have been applied to
get the final scores. Three contrastive systems have been also
submitted, featuring: (1) the fusion of the whole set of 13 (6
acoustic + 7 phonotactic) subsystems contributed by BLZ part-
ners; (2) the fusion of 3 subsystems, for the combination of one
subsystem per site yielding the best performance on develop-
ment data; and (3) the fusion of the same 8 subsystems used in
the primary system under a different backend configuration (in-
cluding a zt-norm and using different datasets to estimate back-
end and fusion parameters).

The paper is organized as follows. Section 2 describes the
datasets used for system development, which have been partly
shared among sites and partly defined specifically by each site.
The main features of the subsystems developed at each site are
briefly outlined in Section 3 (detailed descriptions of the EHU,
L2F and I3A submissions can be found in [1, 2, 3]). Finally,
Section 4 describes the systems included in the BLZ submis-
sion, along with the backend and fusion approaches on which
the submission relies and the procedure followed to choose the
combination of subsystems for the primary and the three con-
trastive systems.

2. Train and development data
2.1. Data collection for the newly added target languages

NIST has provided a development dataset specifically collected
for this evaluation, including 100 30-second segments for each
of the newly added target languages, except for Lao, for which
only 93 segments have been provided. We have augmented the
dataset with 10- and 3-second segments extracted from the orig-
inal 30-second segments. Hereafter, we will refer to this dataset
as lre11. We have randomly split lre11 into two disjoint subsets,
each having approximately half the segments for each language:

• lre11-train. This subset is intended to train specific mod-
els for the newly added languages.

• lre11-dev. This subset is intended for the estimation of
backend and fusion parameters for the joint submission.
It has been also used to evaluate the performance of sub-
systems and fused systems during development (see Sec-
tion 4 for details). In any case, sites should never use this
subset to train language models.

Each of these subsets have around 13 minutes of speech
per target language, which may be enough to estimate backend
and fusion parameters, but not to train robust models. So, we
decided to collect speech data for the newly added languages.



In some cases we collected telephone speech directly from the
source (that was the case of CTS databases and BN databases
including telephone speech). When this was not possible, we
collected broadcast news speech, downsampled it to 8 kHz and
applied the Filtering and Noise Adding Tool (FANT)1 to filter
speech data with a frequency characteristic as defined by ITU
for telephone equipment.

VOA data provided for the 2009 NIST LRE were explored
in first place, starting from the labels provided by NIST. Music
and fragments in English were automatically detected and fil-
tered out, retaining only telephone-channel speech fragments.
Around two hours of Lao were extracted this way. Then we
used databases distributed by the LDC, some of them contain-
ing conversational telephone speech (LDC2006S45 for Arabic
Iraqi and LDC2006S29 for Arabic Levantine) and others broad-
cast news with fragments of telephone speech (LDC2000S89
and LDC2009S02 for Czech). In both cases, segments contain-
ing telephone speech were extracted with no further processing.

The remaining materials were extracted from wideband
broadcast news recordings, dowsampling them to 8 kHz and ap-
plying FANT to simulate a telephone channel. The COST278
Broadcast News database [6] was used to get speech segments
for Czech and Slovak. Arabic MSA was extracted from Al
Jazeera broadcasts included in the Kalaka-2 database created
for the Albayzin 2010 LRE [7]. Finally, broadcasts were also
captured from video archives in TV websites to get speech seg-
ments in Arabic Maghrebi (Arrabia TV, http://www.arrabia.ma)
and Polish (Telewizja Polska, TVP INFO, http://tvp.info). TV
broadcasts were fully audited, so that only reasonably clean
speech segments were selected for training.

We were not able to collect by any means additional train-
ing materials for Panjabi. Hereafter, we wil refer to the data
collected for the newly added target languages as BLZ-train.

2.2. Train data

The collaboration for a joint submission partly focused on shar-
ing and collecting training data for the newly added target lan-
guages, but each site was free to use any other data for system
development, which is interesting for fusion. In the following
paragrahs, we simply give an account of the data used at each
site (see [1, 2, 3] for details).

2.2.1. EHU train data

EHU defined 66 training subsets, very heterogeneous in size
and composition, corresponding to different languages/dialects,
including target and non-target languages and different sources.
A different model was trained on each subset, which means that
EHU subsystems output 66 scores. The EHU training dataset
comprised the following subsets:

• Conversational telephone speech (CTS) from previous
LRE: (1) the Call-Friend Corpus; (2) the OHSU Corpus
provided by NIST for the 2005 LRE; and (3) the devel-
opment corpus provided by NIST for the 2007 LRE.

• Narrowband speech segments extracted from VOA
broadcasts, which were provided by NIST for the 2009
LRE [8][9].

• The lre11-train corpus, which amounts to half of the seg-
ments provided by NIST for the newly added target lan-
guages in the 2011 LRE.

1http://dnt.kr.hs-niederrhein.de/download.html

• The BLZ-train corpus, shared and collected by BLZ part-
ners specifically for the 2011 NIST LRE, covering eight
of the newly added target languages.

2.2.2. L2F train data

The L2F training dataset was composed by several sources of
data, including data provided by NIST for previous evaluations
and other external sources like LDC corpora and captured TV
broadcast data. The training dataset was designed under three
fundamental criteria: (a) to have data from all the NIST LRE11
target languages; (b) to consider separate datasets for training
data obtained from different sources, i.e. conversational tele-
phone speech (CTS), Voice of America (VOA), etc.; and (c) to
keep the size of the training dataset as small as possible.

Attending to the language and source, the L2F training
dataset comprised 43 independent subsets, extracted from vari-
ous sources:

• The VOA3 corpus from NIST LRE09 was used to ex-
tract data in 14 languages: Bengali, Dari, English Amer-
ican, Farsi, Hindi, Mandarin, Pashto, Russian, Spanish,
Thai, Lao, Turkish, Ukrainian and Urdu. Speech seg-
ments were extracted based on labels provided by NIST,
further refined by detecting and discarding segments in
English or with music, and then detecting and retaining
telephone-channel speech.

• Corpora from NIST 1996, 2003 and 2005 LRE were
used to extract conversational telephone speech (CTS)
for 7 languages: English American, English Indian,
Farsi, Hindi, Mandarin, Spanish and Tamil.

• The NIST 2007 LRE corpus was used to extract speech
segments for Bengali, Russian, Thai and Urdu.

• The lre11-train and BLZ-train corpora, as described in
Section 2.1, were used to get speech segments for the 9
newly added target languages. Note that the Lao seg-
ments included in BLZ-train have been already counted
above in the VOA3 corpus.

In order to keep a reduced and balanced training dataset,
only a fraction of the available data was selected. For the 34
subsets not coming from lre11-train, 200 30-second segments
and 100 10-second segments were randomly selected (if pos-
sible). For the 9 subsets coming from lre11-train, all the avail-
able speech segments were selected except for the 3-second seg-
ments for Panjabi. The whole L2F training dataset consisted of
8128 segments, lasting almost 60 hours (less than 2.5 hours per
target language, on average).

2.2.3. I3A train data

The I3A training dataset contained speech from 61 different lan-
guages, extracted from the following sources:

• NIST 2003 and 2005 LRE,

• CallFriend,

• OHSU,

• NIST 2004, 2006, 2008 and 2010 SRE,

• Switchboard,

• the VOA3 development data provided by NIST for
LRE09,

• the lre11-train dataset for the 9 newly added target lan-
guages in LRE11, as defined in Section 2.1,



• the BLZ-train dataset, as defined in Section 2.1, includ-
ing data from the COST278 BN database for Czech
and Slovak and additional data for Arabic MSA, Ara-
bic Maghrebi and Polish, specifically captured from TV
broadcast stations for this evaluation.

For the VOA3 data, only the segments marked as telephone
by NIST were used. Then, segments in English were automat-
ically detected and removed. Finally, repeated speakers within
the same language were detected and the amount of data from
them were limited, to avoid undesired biases.

2.3. Development data

The criterion applied to define the development set was making
the process of tuning systems as robust and reliable as possi-
ble, so we decided to use only segments audited by NIST. To
cover all the target languages, the evaluation sets of the NIST
2007 and 2009 LREs (only the segments corresponding to NIST
2011 LRE target languages), together with the lre11-dev sub-
set, as defined in Section 2.1, were used. We defined three
development subsets: dev30, dev10 and dev03, correspond-
ing to nominal durations of 30, 10 and 3 seconds, containing
8539, 8343 and 8290 segments, respectively. Target languages
showed large differences in the number of segments amongst
each other. In particular, the newly added target languages were
the less populated, with around 50 segments each, and thereby,
they were the most likely to suffer from overtraining and/or ro-
bustness issues.

3. The BLZ subsystems
3.1. EHU subsystems

3.1.1. The EHU Dot Scoring subsystem

Acoustic features consisted of the concatenation of 7 Mel-
Frequency Cepstral Coefficients (MFCC) and the Shifted Delta
Cepstrum (SDC) coefficients under a 7-2-3-7 configuration. A
gender independent 1024-mixture GMM was estimated on the
training dataset. Then, for each input utterance, MAP adap-
tation was applied and the centered zero-order and first-order
Baum-Welch statistics were used as features.

The Linearized Eigenchannel GMM (LE-GMM) approach,
also known as Dot-Scoring, makes use of a linearized proce-
dure to score test segments against target models (see [10] for
details). Channel compensation was performed by using Niko
Brümer’s recipe [11]. The channel matrix was estimated using
only data from target languages.

3.1.2. The EHU iVector subsystem

In the EHU approach, the estimation of the total variability ma-
trix T and the computation of iVectors started from the channel-
compensated sufficient statistics computed for the EHU Dot-
Scoring subsystem. Except for that, the approach described in
[12] was followed. The total variability matrix was estimated
using only data from target languages.

3.1.3. The EHU Phonotactic subsystems

Three phonotactic sub-systems were developed under a phone-
lattice-SVM approach, using the Temporal Patterns Neural Net-
work (TRAPs/NN) phone decoders developed by the Brno Uni-
versity of Technology (BUT) for Czech (CZ), Hungarian (HU)
and Russian (RU) [13]. Regarding channel compensation, noise
reduction, etc. the three subsystems relied on the acoustic front-
end provided by BUT decoders. Lattices produced by BUT

phone decoders were used to produce expected counts of phone
n-grams, by means of HTK [14]. Finally, a Support Vector Ma-
chine classifier was applied, SVM vectors consisting of counts
of phone n-grams up to n = 3, weighted as in [15]. A Crammer
and Singer solver for multiclass SVMs with linear kernels was
applied, by means of LIBLINEAR [16].

3.2. L2F subsystems

3.2.1. The L2F PRSVM subsystems

Four Phone Recognition followed by Support Vector Machine
Modelling (PRSVM) subsystems were developed, exploiting
the phonotactic information extracted by phone recognizers for
European Portuguese (pt), Brazilian Portuguese (br), European
Spanish (es) and American English (en). Phone recognition
was performed by means of the hybrid ASR system AUDIMUS
[17], based on MultiLayer Perceptrons (MLP) trained on differ-
ent sets of acoustic features and providing the posterior proba-
bilities of phones for a given speech segment. Monophone units
were used, resulting in MLP networks of 39, 40, 30 and 41 soft-
max outputs, respectively.

For each input speech signal, the recognized phone lat-
tice was used to compute posterior expected n-gram counts (up
to trigrams), by means of the ’lattice-tool’ program from the
SRILM toolkit [18]. Finally, n-gram counts were stacked in a
single vector. The high-dimensionality of the n-gram vectors
(between 30000 and 75000 components) motivated the use of
dimensionality reduction techniques. In particular, frequency
ranking was applied to get reduced vectors including only the
counts of the 10000 most frequent n-grams.

For each target language and for each phone recognizer, an
L2-regularized support vector classifier was trained on the cor-
responding set of training vectors, using the LibLinear imple-
mentation of the libSVM tool [19]. In order to avoid problems
with discriminative training, data coming from subsets with the
same target language than that of the subset being trained were
taken neither as positive nor negative samples.

3.2.2. The L2F GSV subsystem

This subsystem followed the approach known as GSV [20],
which has been successfully applied to both speaker and lan-
guage verification. The acoustic features were SDC of Per-
ceptual Linear Prediction features with log-RelAtive SpecTrAl
speech processing (PLP-RASTA), under a 7-1-3-7 configura-
tion. Low-energy frames were detected and removed by apply-
ing a simple bi-Gaussian model of the log energy distribution.

A 1024-mixture GMM-UBM was trained on approximately
150 randomly selected speech segments per training subset
(which amounted to 5200 speech segments, almost 24 hours
of speech). Training subsets coming from lre11-train were ex-
cluded, except for those in Panjabi. One single iteration MAP
adaptation with relevance factor 16 was performed for each
speech segment to obtain a high-dimensional feature vector of
size 56× 1024.

SVM language models were trained on MAP-adapted
GMM supervectors by means of the LibLinear implementation
of the libSVM tool [19], using a linear kernel based on the
Kullback-Leibler (KL) divergence. Again, data coming from
subsets with the same target language than that of the subset
being trained were not considered.



3.2.3. The L2F iVector subsystem

The L2F iVector subsystem follows the approach in [12]
(where the distribution of iVectors for each language is mod-
elled with a single Gaussian), using PLP-RASTA SDC features
and a 1024-mixture GMM-UBM, as described for the L2F
GSV subsystem. The total variability matrix (T) was estimated
according to [21], the dimension of the total variability sub-
space being fixed to 400. T was trained on zero and first-order
sufficient statistics estimated on the training dataset (including
Panjabi data from lre11-train). The T matrix was used to extract
the total variability factors as in [21], the resulting vectors, nor-
malized to unity, being referred to as iVectors. Like in [12], the
iVectors extracted for a given training subset were used to esti-
mate a single mixture Gaussian distribution with full covariance
matrix shared across different training subsets.

3.3. I3A subsystems

3.3.1. The I3A iVector subsystem

The I3A iVector subsystem was also based on the approach pre-
sented in [12]. Acoustic vectors included 7 static MFCC and 49
SDC coefficients computed under a 7-1-3-7 configuration. Vo-
cal Tract Length Normalization (VTLN) and Cepstral Mean and
Variance Normalization were applied in MFCC computation. A
2048-mixture GMM-UBM was used. Both the GMM-UBM
and the total variability matrix T were trained on the whole
training dataset, including 61 different languages. Once the
iVectors were obtained, a linear generative classifier was trained
as in [12]. The distributions of iVectors for individual languages
were modeled by Gaussian distributions with a single within-
class full covariance matrix shared by all the languages. Only
target languages were modeled in this step, using 500 speech
segments per language (when possible).

3.3.2. The I3A Joint Factor Analysis (JFA) subsystem

This subsystem followed the principles in [22], using the same
56-dimensional acoustic features and the same 2048-mixture
GMM-UBM as for the I3A iVector subsystem. Two factors
were defined, one for the language and one for the channel.
Thus, a channel compensated model for each language was ob-
tained. The whole training dataset (including 61 different lan-
guages) was used to estimate model parameters. Finally, each
utterance was scored via linear scoring, as proposed in [23] (see
[3] for details).

4. The BLZ submission
The BLZ submission consists of one primary and three con-
trastive systems, whose features are summarized in Table 1.
Backend and fusion were estimated and applied separately for
each nominal duration, under two different configurations:

1. Gaussian backend. Training datasets for backend and
fusion: dev10+dev30 for 10- and 30-second segments,
dev03+dev10+dev30 for 3-second segments.

2. zt-norm + Gaussian backend. Training datasets for back-
end and fusion: dev30 for 30-second segments, dev10
for 10-second segments and dev03 for 3-second seg-
ments.

The EHU, L2F and I3A subsystems produce 66, 43 and
24 scores, respectively (one score per trained model). These
scores are taken as input by the backend, which outputs 24 log-
likelihoods, one per target language. A Gaussian backend (pre-

Table 1: BLZ primary and contrastive systems: configuration
and fused subsystems.

Subsystems
System Config EHU L2F I3A

Phone-CZ PRSVM-pt iVector
Pri (1) Phone-HU PRSVM-br JFA

Phone-RU
DotScoring
Phone-CZ PRSVM-pt iVector
Phone-HU PRSVM-br JFA

Con1 (1) Phone-RU PRSVM-en
DotScoring PRSVM-es

iVector GSV
iVector

Con2 (1) Phone-RU PRSVM-es JFA
Phone-CZ PRSVM-pt iVector

Con3 (2) Phone-HU PRSVM-br JFA
Phone-RU
DotScoring

ceded by a zt-norm [24] for the contrastive system 3) has been
applied in all cases. Finally, the resulting N×24 log-likelihood
values (N : number of subsystems) are fused to get 24 calibrated
scores for which a minimum expected cost Bayes decision is
made, according to application-dependent language priors and
costs. The FoCal toolkit has been used to estimate the backend
and calibration/fusion models, applying linear logistic regres-
sion under a multiclass paradigm [25, 26].

4.1. Selection of subsystems

To select the best combinations of subsystems, the development
set was split in two halves, the first being used to estimate back-
end and fusion parameters and the second to generate a set of tri-
als, on which the performance measure, as defined in the Eval-
uation Plan, was computed, using the Bosaris toolkit [5]. In
fact, to have a more robust measure of system performance, 10
random partitions (always the same) were defined and the aver-
age performance was computed on them. This strategy pursues
(via random subset selection) the same goal than a 2-fold cross-
validation strategy, but providing a better balance between the
size of the evaluation subset (large enough for the results to be
reliable) and the number of partitions considered in the average
(for statistical significance).

Decisions were made based on system performance on the
subset of 30-second segments, applying a Gaussian backend
and a discriminative multiclass fusion by means of FoCal. An
exhaustive search was tried in first place, by computing sys-
tem performance for all the k-combinations of 13 subsystems.
However, this was a very costly process so we aborted it for
k = 5. Instead, we tried a much faster greedy process: the best
k-combination was determined by extending the best (k − 1)-
combination with each of the available subsystems and that
yielding the best performance was selected. Though this should
generally lead to suboptimal solutions, we found that the best
greedy k-combinations for k = 1, 2, 3 and 4 matched the op-
timal ones (those previously found with an exhaustive search).
The actual and minimum Cavg for the optimal combinations un-
der the greedy approach are graphically shown in Figure 1. For
the primary system, the best overall combination was selected
according to the evolution of the actual cost. The combination
involving eight subsystems was chosen because the actual cost,
which had monotonically decreased to that point, began to in-
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Figure 1: Actual and minimum average costs on the develop-
ment set (30-second segments) for the optimal combinations of
k subsystems according to a greedy algorithm.

crease for combinations of higher order. The fusion of all the
available subsystems was selected for the first contrastive sys-
tem. The best combination of three subsystems involving one
subsystem per site was selected for the second contrastive sys-
tem. Finally, for the third contrastive system, the same com-
bination used for the primary system was selected, but under a
different backend/fusion configuration, which provided a slight
performance improvement on the development dataset.

4.2. Processing times

At EHU, a computer with 2 Intel Xeon 5550 CPUs (x4 cores, x2
turbo HT) running at 2.66GHz and 32GB of memory was used
for processing the evaluation data. Processing times reported by
EHU were all measured on this machine. At L2F , a cluster of
computers under the Condor framework for parallelization of
tasks, was used. Thus, to approximately estimate computation
times at L2F , 300 speech files (amounting to 4520 seconds)
from the evaluation set were chosen and language recognition
tests were run in a computer with 2 Intel Xeon E5530 CPUs (x4
cores, x2 turbo HT) running at 2.40GHz with 24GB of mem-
ory. At I3A, a high-performance computing cluster was used
to process evaluation data, including 1534 processors of vari-
ous types and 3.5 TB of total memory, under Condor software
for parallelization. Processing times reported by I3A have been
calculated by processing ten 30-second speech files in a Dual
Nehalem processor at 2.33 GHz with 24 GB of memory (one
of the processor types included in the I3A cluster). Real-time
factors for all the subsystems, the sub-processes and the fused
systems are shown in Table 2.

Note that the computation time reported for the fused sys-
tems is lower than the addition of times for the corresponding
subsystems, since some of the sub-processes were shared by
two or more subsystems. For instance, the EHU iVector sub-
system relies on the compensated statistics computed for the
EHU Dot-Scoring subsystem. The same applies for the I3A
iVector subsystem, which relies on the feature extraction and
statistics computation performed for the I3A JFA subsystem. In
some cases, sub-processes with relatively small (negligible) run
times (such as iVector scoring and SVM vector scoring for the
EHU subsystems) have not been taken into account. Process-
ing times for the backend and fusion operations have been also
omitted, since they are extremely fast. The primary system ran
at 1.5745 times real time (the same as the contrastive system
3). The contrastive system 1, which fused all the available sub-

Table 2: Real-time factors of subsystems, sub-processes and
fused systems. The real-time factor of fused systems is com-
puted by adding the real-time factors of the involved subsys-
tems, the shared sub-processes being counted just once.

Dot-Scoring 0.0467
Acoustic Parameterization 0.0020

Sufficient Statistics 0.0187
Channel Compensation 0.0260

iVector 0.0717
Acoustic Parameterization 0.0020

Sufficient Statistics 0.0187
Channel Compensation 0.0260

iVector Extraction 0.0250
EHU Phone-SVM-CZ 0.2114

Lattice Decoding 0.1267
Expected Counts 0.0847

Phone-SVM-HU 0.2300
Lattice Decoding 0.1517
Expected Counts 0.0783

Phone-SVM-RU 0.2164
Lattice Decoding 0.1327
Expected Counts 0.0837

PRSVM 0.6928
Feature Extraction 0.0518

Lattice Decoding + Counts pt 0.1383
Lattice Decoding + Counts br 0.1648
Lattice Decoding + Counts es 0.1330
Lattice Decoding + Counts en 0.2049

L2F GSV 0.4588
Feature Extraction 0.1631

Supervector Computation 0.1925
Scoring 0.1031

i-Vector 0.2620
Feature Extraction 0.1631
Sufficient Statistics 0.0425
i-Vector Extraction 0.0564

JFA 0.3886
Feature Extraction 0.2777

Statistics Computation 0.0748
Channel Factors + Scoring 0.0361

I3A i-Vector 0.4790
Feature Extraction 0.2777

Statistics Computation 0.0748
iVector Extraction 0.1143

iVector Classification 0.0122
Primary 1.5745

Contrastive 1 2.4951
BLZ Contrastive 2 0.7898

Contrastive 3 1.5745

systems, ran at 2.4951 times real time, whereas the contrastive
system 2 (including three subsystems, one per site) was the only
system able to operate in real time (0.7898×RT ).
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