KALAKA-3:

a database for the recognition of spoken European languages on YouTube audios

Luis Javier Rodríguez-Fuentes, Mikel Penagarikano, Amparo Varona, Mireia Diez, Germán Bordel

Grupo de Trabajo en Tecnologías Software (GTTS, http://gtts.ehu.es)
University of the Basque Country UPV/EHU, Spain
e-mail: luisjavier.rodriguez@ehu.es

LREC 2014 Reykjavik (Iceland) May 28-30 2014

Outline

- Spoken language recognition
- Albayzin LRE 2012
- KALAKA-3: main features
- KALAKA-3: design and collection procedure
- KALAKA-3: evaluation
- Conclusions and future work

Spoken Language Recognition

- Is utterance X spoken in French?
- Give me a score (the higher the score, the higher the likelihood that X is spoken in French)
- To make a decision, apply a threshold to the given score

SLR Evaluation

 Performance: decisions compared to groundtruth for a set of speech files and target languages

Types of tests:

- closed-set (known set of target languages)
- open-set (any language could be spoken)

• Difficulty:

- background and/or channel conditions
- dialect variability
- short utterances

International SLR Benchmarks

- NIST LRE:1996, 2003, 2005, 2007, 2009 and 2011
 - Focused on telephone speech for large-scale filtering in security applications, dealing with certain languages of interest (for strategic reasons)
- Albayzin LRE: 2008, 2010 and 2012
 - Initially dealing only with languages spoken in Spain, then extended to other European languages
 - 2008 LRE run on clean Broadcast News (BN) speech
 - 2010 LRE run on BN speech with noisy segments
 - 2012 LRE run on unrestricted speech found in Internet (YouTube audios)

Albayzin 2012 LRE

- Designed to address the conditions producing variability or difficulty in previous evaluations
 - Unconstrained speech (background, channel, dialect, amount of speech available, etc.)
 - Low-resource scenario (few data available)
- Target application: indexing the spoken language in multimedia contents
- Task defined this way was of practical interest and challenging enough to foster research

KALAKA-3: main features

- Created to support the Albayzin 2012 LRE
- Recycles BN speech from previous evaluations (for training: 6 target languages)
- Includes unconstrained speech signals from YouTube videos (for tuning and testing)
- Tasks:
 - Plenty-of-Training: 6 target languages
 - Empty-Training: 4 target languages
- Open-set tests: 11 Out-Of-Set (OOS) languages

KALAKA-3: main features

- Three datasets: Train, Dev and Eval
- Train: 108 hours, 18 hours per target language (80% clean, 20% noisy)
- Dev/Eval: same size (+2000 YouTube audios), target languages balanced, different distribution of OOS languages
- KALAKA-3: ~200 hours, currently distributed as a set of tarballs (for downloading), after direct request to authors

KALAKA-3: design

Goal:

- 300 YouTube videos per target language (150 Dev + 150 Eval)
- 100 YouTube videos per OOS language
- Dev/Eval datasets as independent as possible, to avoid a biased benchmark
- Duration: 30-120 seconds, including at least 5 seconds of speech
- Audios with telephone speech discarded

- (1) Lists (spreadsheets) of candidate YouTube
 videos automatically created for each language
 - list of language-specific keywords:
 - √ 2000 words (canonical forms) with 6 or more characters randomly chosen from the aspell dictionary
 - ✓ words in the aspell dictionary of other language excluded
 - ✓ only 1000 keywords retained per language
 - 6 YouTube categories most likely to contain speech:
 Education, News, Entertainment, Howto, Nonprofit, Technology
 - For each (language, category), list of videos built by filtering per category and duration and searching for keywords in metadata, using YouTube API v2.0

- (2) Videos ranked in spreadsheets according to:
 - Creative Commons (CC) license (not many)
 - Geographical location (geographical metadata not always available):
 - priority given to videos located within a certain distance from a major city speaking the language of interest
 - a small list of major cities defined for each language
 - distance depending on the size of the country (typically, R = 200 km)

(3) Validation

- Each (language, category) spreadsheet scrolled through and annotated with validation marks
- Videos listened to and subjectively judged by 5 human auditors (2 months)
- Videos validated in order, until the desired amount (55 for target languages, 17 for OOS languages) is attained
- A video is validated if and only if:
 - √ contains +5 seconds of speech
 - ✓ contains speech in a single language (for OOS languages, several languages may appear, but not target languages)
 - √ background/channel conditions are admissible

• (4) Fetching and converting YouTube audios

- Videos fetched using youtube-dl
- Audio layer extracted using ffmpeg
- Audio converted to single-channel 16-kHz 16-bit PCM encoded WAV files using SoX
- Filenames anonymized
- The database provides no information about the original videos (only the spoken language is given in the groundtruth files)

KALAKA-3: YouTube video collection

- 4168 audios validated out of 21860 audited
- Dev: 2059 (News, Education, Howto)
- Eval: 2019 (Entertainment, Nonprofit, Technology)
- At least 150 videos per target language
- Different OOS distribution

		Devel	Eval
Target languages (Plenty-of-Training)	Basque	154	150
	Catalan	149	158
	English	150	156
	Galician	151	160
	Portuguese	160	163
	Spanish	153	154
Target languages (Empty-Training)	French	150	155
	German	146	151
	Greek	155	165
	Italian	158	160
OOS languages	Bulgarian	0	98
	Croatian	90	0
	Czech	102	0
	Finnish	0	89
	Hungarian	51	51
	Polish	102	0
	Romanian	98	0
	Russian	45	54
	Serbian	0	91
	Slovak	0	102
	Ukrainian	45	52

KALAKA-3: evaluation

- New metric: F_{act} (actual relative confusion), ranging between 0 (perfect system) and 1 (non-informative system)
- Task reformulated: given an audio X and N target languages, systems must provide N+1 scores (for target and OOS languages)
- PO performance only slightly worse than PC: low confusion between target and OOS languages (<u>design flaw</u>)
- EC/EO performance much worse than PC/PO (late systems 1 and 6 used dev data for training): lack of training data is a challenging condition !!!

Albayzin 2012 LRE: Summary of results

Systems	PC	PO	EC	EO
1	0.071	0.085	_	_
2	0.078	0.120	0.498	0.516
3	0.113	0.114	0.711	0.796
4	0.121	0.160	0.626	0.676
5	0.122	_	_	_
6	0.141	0.184	_	_
7 (late)	0.407	0.216	_	_
1 (late)	_	_	0.216	_
6 (late)	_	_	0.310	0.372

KALAKA-3: evaluation

- Acoustic SLR systems with competitive performance on other tasks (NIST LRE): MFCC/SDC-iVector and PLLR-iVector
- Basic Voice Activity Detection (VAD) based on PLLRs (could be failing due to background music or conversations)
- 1/2 development data used for training in the EC/EO tracks (note that dev data were not intended for training)
- Performance comparatively good in EC/EO, but not in PC/PO (VAD errors, lack of phonotactic systems)

Results for two acoustic SLR systems and the fusion of them

Systems	PC	PO	EC	EO
iVector-MFCC	0.139	0.254	0.238	0.342
iVector-PLLR	0.191	0.294	0.217	0.341
Fusion	0.098	0.128	0.131	0.221

Conclusions and future work

- KALAKA-3 provides challenging tasks for the development of SLR technology
- As far as we know, this is the first SLR benchmark dealing with unconstrained speech found in Internet (YouTube audios)
- Already used by several research groups
- We plan to license the Dev and Eval datasets through LDC