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1 IntroductionAbstract

k-Testable Languages in the Strict Sense (k-TSS), which are
a subclass of regular languages, are used in this work to be
integrated in a Continuous Speech Recognition (CSR)
system. An efficient representation of the corresponding
Stochastic Finite State Automaton (SFSA), that integrates K
k- TSS models into a self-contained model, is proposed in
this work. The whole model is represented in a simple array
of an adequate size that can be easily handled at decoding
time by a simple search function. An experimental
evaluation of the proposed SFSA representation was
carried out over an Spanish recognition task. These
experiments showed that syntactic models could be
efficiently represented and integrated in CSR systems.

Keywords: Continuous speech recognition, language

modeling, syntactic pattern recognition.

Statistica1 methods have been extensively used to generate
Language Models (LM) to be integrated in Continuous
Speech Recognition (CSR) Systems. They are based on the
estimation of the probability of observing a given lexica1
unit, conditioned on the observations of N preceding lexical
units (N-gram models): P(Wl/w1"."Wn-J. However, in
practice, the use of this kind of models is reduced to low
values of N, exclusively bigrams and trigrams in rea1ly
large-vocabulary recognition tasks (Placeway et al., 1993)"

Since the language constraints could be better modeled
under a Syntactic approach, some formalisms based on
regular grammars and context free grammars have a1so
been used in LM" However, they have not extensively used
since they present computational complexity problems"
Moreover, full integration with the acoustic models in a
CSR task and automatic learning from samples have been
considered very difficult tasks under these forma1isms

(Segarra, 1993)"

k- Testable Language in the Strict Sense (k- TSS) (Bordel et
al" , 1997) are used in this work to be integrated in a CSR
system" k- TSS Languages are a subclass of regular
languages and can be inferred from a set of positive
samples by an inference algorithm (Garcfa and Vidal,
1990)" k-TSS language models can be considered as a
syntactic approach of the well-known N-grams" In fact,
Finite States Networks are nowadays used to represent
these statistical models" In such a case, similar" probability
distributions can be obtained by N-grams and by k- TSS
language models (Segarra, 1993) (Varona, 2000)"

* Work partially supported by the Spanish CICYT under grant TIC99-

0423-CO6-03
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The use of smoothed k- TSS regular grammars allowed to
obtain a deterministic Stochastic Finite State Automaton
(SFSA) integrating K k- TSS models into a self -contained
model (Varona and Torres, 1999). The aim of this work
was to show the ability of this syntactic approach to be well
integrated in a CSR system. For this purpose an efficient
representation of the model in a simple array is proposed in
this paper. This structure can be easily handled at decoding
time by a simple search function through the array allowing
models with high values of K to be wel1 managed. Some
decoding experiments over a Spanish recognition task
showed that syntactic models can be efficiently represented
and integrated in CSR systems.

1¡-r..W(jol¡ and Wi-(K-l¡+IWj-(K-l¡...Wj labelingO two states of the

automaton. When Wj is observed an outgoing transition

from the first to the second state is set and labele~ by Wj.

Figure 1: Two states ofthe SFSA representing two K-grams.
Transitions are labelled by words appearing in the training sample

after the K -gram label1ing the source state.2 The Stochastic Finite State

Automaton (SFSA)

Such a model can only associate a probability to any string
of words that had been observed in the available samples,
i.e., seen events. However, a probability need also to be
associated to those events not represented in the training
corpus, i.e., unseen events. To deal with this problem, a
syntactic back-off smoothing procedure was developed in
previous works (Bordel et al., 1994). Under this formalism,
the probabilities to be associated to the set of words
appearing after the string labeling state q in the training
corpus -the vocabulary of the state ~q -are explicitly
estimated according to the counts N(wlq), which are the
number of times that word w appears after the string
labeling state q. However, this counts are reduced to save
some probability mass to be redistributed to the (I~I -I~ql)

unseen events associated to state q. Then, under the
syntactic back-off smoothing (Bordel et al., 1994), the
transitions probabilities corresponding to those events not
represented in the training corpus, are estimated according
to more general probability distributions in k- TSS models,
with k<K. These transitions can be grouped into a unique
transition to a back-off state bq associated to each state q.

Thus, each state of the automaton q E QK should add a new

transition to its back-off state bq:

8K(q,U) =(bq,P(bq I q)) (2)

The Smoothed SFSA is a self-contained model that
integrates K k-TSS automata, where k=1,..., K, in a unique
automaton. It is defined by a five-tuple (E' , QK, qo' qr ~)

where:

-E'=Eu {$} being E= {Wj}'j= 1...IEI, is the vocabulary,
i.e. the set of words appearing in the training corpus. The
nil symbol $ was included in the training corpus to isolate
each sentence.

-QK is the state set of the automaton. Each state represents
a string of words W;.kW;.(k.I)...WI.I' k = 1...K-l, with a

maximum length of K-l, where i stands for a generic index
in any string WI...W.. appearing in the training corpus. Such
a state is labeled as w:=: .States representing the initial
strings of training sentences are labeled as $w:.::-: where k =

1...K-2 to guarantee a maximum length of K-l. A special
state labeled as A. represents a void string of words.

-The automaton has a unique initial and final state qo = qf E

QK which is labeled as $.

-~ is the transition ~nction. ~: QK x (E u {$}) ~ QK
x [0:..1]. ~(q, w) = (qd' P(wlq)) defines a destination state

qd E QK and a pr{)bability P(wlq) E [0...1] to be assigned to
each element (q, w) E QK x (E u {$}). Each transition

represents a k-gram, k = 1...K; it is labeled by its last word

Wi and connects two states labeled up to with K-l words. As
an example, transitions corresponding to strings of words
of length K connecting states associated to string lengths K-
1 are defined as:

~ (~jK-I), Wi )=(~-(K.-I}¡.I,~Wi / ~jK-I») (I)

The whole definition of the Automaton is provided in
(Varona, 2000). Figure 1 represents the K-grams Wi-(K-J)W;-(K-

where U represents any unseen even associated to state q.
which is labeled by a word Wj E (~-~q). 1he back-off state

bq associated to each state q can be found in the (k-l)-TSS
submodel.

Then. the probability to be associated to each event not
represented in the training corpus P(wJq) VWj E (~.-~q) is

estimated according to:

p(wjlq)= P(bqlq)p(wjlbq) 'v'Wj E(L-Lq) (3)
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A complete presentation of the syntactic back off scheme
can be found in (Bordel et al., 1994) and (Varona, 2000).
Figure 2 shows such a structure for a state q labeled as
W~:K-I). The transitions labeled by the I~ql words observed

at training time after the K-gram labeling q connect it to
other states in the same K-TSS submodel. Transition
labeled by U connects state q to its back-off state,
W~:K-I)+lin the (K-1)-TSS submodel.

qEQK and for each WE~.. This goal is achieved by a simple

search function through the proposed array, which is presented

in Section 3.3.

3.1 A Finite Network Representing the
Structure of the Smoothed SFSA

3 An Efficient Representation of the

Smoothed SFSA

The main advantage of this fonnulation is that it leads to a
very efficient representation of the model parameters
learned at training time, that are probability distribution and
model structure. In this Section the procedure to obtain
such a representation is presented. In a first step a finite
network represented the structure of the Smoothed SFSA.

In a first step, the data obtained from the learning sample
are stored in a trie structure with K-l1evels. Each node at
each level k, with k = 1..K-l, is associated to a state of the
Smoothed SFSA labeled by a string of words of length k,
w :--~ , that has been observed in the training set, that is, seen

events. The number of children of each node q = w:--~ is

equal to the number of words appearing after w:--~ in the

training sentences, that is, ILql. The root of the trie is
associated to state A representing a void string of words.
Level one represents the l-TSS model and consists of ILI

nodes corresponding to each word of the vocabulary. As
mentioned in previous Section, the automaton has a unique
initial and final qo = qJ' which is labeled as $. This fact leads

to consecutively parser sets of sentences that are forced to
start and finish with $. This state is different to the root
node of the trie, labeled as A, since the probability P(w/A)

is the estimated probability P(w), whereas P(wl$) is the

probability associated to Wj being the initial word in a
sentence. As a consequence, P($/A) would be the

probability of a sentence and would only be considered
when parsing a new sentence. Then, when each sentence is
individually parsed, this link can be removed. In such a
way, the original trie is transformed in a bi-trie where A and
$ are the root nodes but only $ represents the initial state of
the automaton.

The procedure to represent the Smoothed SFSA efficiently
is illustrated with a simple example. A famous poem by the

Spanish poet Miguel Hernández has been selected to act as
the sample text corpus. Figure 3 shows this poem, the
corresponding training set R+ and vocabulary L.

Figure 2: Transitions labelled by seen events(wj E Lq) connect

each state to states in the same K- TSS submodel. Transition
labelled by unseen events connects it to its back-off state in the

(K-l)-TSS submodel.

Figure 4 shows the bi-trie for K=4 when the training set R+

and the vocabulary }:; of Figure 3 were used. In this Figure,

the corresponding nodes of the bi-trie represent all the

states of the automaton. Transitions from state labeled by A

which represents a void string of words, are represented by

links between the root A and its children nodes. Links

connecting node $ to its children represent transitions from

the initial state. Transitions that correspond to strings of

words shorter than K are represented by I}:;ql links

connecting each node of the k=1..K-2 levels to its I}:; I
q

children. Nodes of K-l level represent the states associated

to word strings of length equal to K-l labeled as W:.:{IK-I).

For the sake of clarity, transitions to the final state

This network was derived from an initial trie built from the
training set. This procedure is shown in Section 3.1. The
initial trie nature of the network let to allocate both, the
structure of the Smoothed SFSA and the probability
distributions in a simple array, presented in Section 3.2. To
complete the representation of the Smoothed SFSA the
transition function o of the Automaton defined in Section 2
should be defined, and thus represented, for each state
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established for all nodes in the bi-trie each time the symbol
$ appears in the training corpus are not drawn in Figure 4.

Nodes representing states with transitions to node labeled

as $ are outlined instead.

r$llego con tres heridas $Ia del 1

I amor $Ia de la muerte $ la de la I

I vida $ con tres heridas viene $

R+ = ~ la de la vida $ la del amor $Ia

I de la muerte $ con tres heridas I

lyo$ladelavida$ladela I

l muerte $Ia del amor $

con tres heridas
la del amor
la de la muerte
la de la vida
con tres heridas viene
la de la vida
la del amor
la de la muerte
con tres heridas yo
la dé la vida
la de la muerte
la del amor { la, de, del, amor, muerte, vida, }L = llego, con, tres, heridas, viene, yo

Miguel Hemández

Figure 3: Selected training corpus to illustrate the procedure to represent the Smoothed SFSA efficiently

Figure 4: Bi-trie directly obtained from the training set R.'. of Figure 3 after the first step of the procedure for K=4 model.
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nodes with transitions to the final state labelled as $
intemal nodes

,~
transitions from level k-l to level k with k=2
K transitions between nodes of level K

Figure 5: The network representing the structute of the non smoothed SFSA (K=4) obtained from the training set R+ of Figure 3.

~

----
-

initial

state

/

/

interna! nades transitions from level k-l to level k with k=2 00 K

transitions between nodes of level K

back offtransitions

-

--)
nades with transitians ta the final state labelled as $

Figure 6: The complete network representing the structure of the Smoothed SFSA (K=4) obtained from the training set R+ of

Figure 3.

To complete the representation of the SFSA, transitions

that correspond to strings of words of length K

connecting states associated to string lengths equal to K -1
need also to be added. These transitions are represented

by links between nodes of the K-1 level labeled as
i-1

Wi-(K-l).

The finite network obtained by including these transitions
represents the Structure of the complete non-smoothed
SFSA. Figure 5 shows such a structure for the training
corpus of Figure 3.

In a final step, the smoothing technique is applied to
each node in order to obtain a network representing the
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Smoothed SFSA. As a consequence, new links representing
back-offtransitions should be created. As mentioned above,
the back-off state b associated to each state q can be found
in the ( k-l )- TS modél. Thus, the destination node for this link
should then be found in the previous level ofthe trie. Figure 6
shows the fmite network representing the structure of the
Smoothed SFSA (K=4) forthe training corpus in Figure 3.

-a double, which represents P(Wi/q) ~Wi E ~q or P(b/q) for

unseen events.
-a short integer, which represents the value ofl~ql.

a short integer, which represents the explicit link to the
first child of q or to its back-off state bq

Figure 7 shows this table representing the Smoothed SFSA in

Figure 6. In Figure 7 some additional information has also be

included to clarify the meaning Of each array component: state

number #q and its label, the word label and the table index.

However, onlyfourelements, #w,P(w/q), I~ I andthe indexof
q

the destination position, need to be handled. For the sake of

clarity each transition is represented by the label of the last

word ofthe involved string, (label(w)), instead ofby its integer

index (#w). In this column symbol U represents any unseen

even associated to state q which is labeled by a word w. E
J

(~'-~ ). The destination ofthis transition is the corresponding
q

back-off state b and the associated probability P(b /q) was
q q

calculated according to syntactic back-off smoothing

procedure (Varona and Torres., 1999).

3.2 A Simple Array to Allocate the Smoothed
SFSA

A simple array was used to allocate all the parameters ofthe
model. A state of the automaton is represented by Ikql+ 1
array rows, each of one representing an outgoing transition.
Each position represents a pair ( q, w) where q E if and w E kq

u{U}.

It consists of four elements:
-a short integer, which represents a transition labeled by a

word w E Lq or by the symbol U that stands for any unseen

event.

ind .q '.bel(q) 1t,1 l.b.l(.) p(./q) d. .k-T..
1 1. [..J ." .a ~.~~~~ o!
2 da 0.133322
3 con 0.066724
.tres 0066726
5 heridas 0.066728
6 del 0.066732
7 amor 0.066734
8 muQrte 0.066736
9 vida 0.066738
lO viQne 0.022240
11 yo 0.022242
12 llego 0.022244 K~l
13 2 [$J 3 .a ~.~~~~ 4~
1. con 0.133349
15 llego 0.06675
16 U 034611
I7 3 [laJ 4 Cle ~~oe~ ee
18 del 0.157953
19 muert" 0.157957
20 vida 0.157959

~! -~- ~.~~~~ ~,"" 4 (CIeJ ..a ,.e"', u.
23 U 0.21431
~~ 5 [conJ .trQS ~.!e~~ ~4
25 U 0.26791
~; 6 [tresJ .hQr,CIas ~.!e!!~ ~b
27 U 0.2679 1
~é 7 [herídasJ 3 .~.~~~! O~
29 viene 0.166770
30 yo 0.166772
31 U 0.52321
~2 )j ldelJ .amor ~.?e!!~ !4
33 U 0.26791
~~ 9 lamorJ .~ ~.!~~~ ~3
35 U 0.25001
~; lO lmuerteJ .~ ~!e~~ ~3
37 u 0.25001
~é II [vídaJ ..~!e~~ ~3
39 u 0.25001
~5 12 [víeneJ 1 .~.!e~~ ~3
.1 u 0.25001
¡2 13 lyol 1 ~ ~.!e~~ ~3
.3 u 0.25001
¡~ 1. [11egoJ 1 con ~.e~~!! !. ..~
.5 u 053571 K~2
j; 15 [$laJ " CIQ ~.~~e~ !~
.7 dal 0.272780
.8 u 0.345517
¡~ 16 l$conJ 1 trQS u.~~~! ~~
50 U 1.333324
5I 17 [$11egoJ 1 con ~.e!!~~ ~~
52 u 1000044

53 18 [la del] 1 amor 0.750086

54 U 1.000032

SS 19 [la deJ J. J.a o.~~?! ~~

56 U 1.000022

s7 20 [la muerteJ J. ~ 9.?~22 !~
58 U 1.000036

S~ 21 [la v,-daJ J. ~ 0.?529 !~
60 U 1.000038

~I 22 [de laJ 2 muerte 2.~Z~2 ~!

62 vida 0.375093

63 U 0.365417

~~ 23 [con tresJ J. heridas 0.?~22 ~~

65 U 1.000026

~~ 24 [tres heridasJ 3 ~ 2.:!-~~Z :!-~
67 viene 0.166799

68 yo 0.1667101

69 U 1.000028

7B 25 [heridas vieneJ J. ~ 0.~222 1~
71 U 1.000040

72 26 [heridas yoJ J. ~ 0.?222 J.~

73 U 1.000042

7¡ 27 [del amorJ J. ~ 9.??22 !~
75 U 1.000034

7~ 28 [llego conJ J. tres 2.?222 !!!3 -.~
77 U 2.000024 K~3

78 29 [~ la deJ J. J.a 9.~??~ ~~

79 U 1.000055

sB 30 [~ la delJ J. amor 0.??22 ~~

81 U 1.000053

s2 31 [~ con tresJ J. herJ.das 9.~~~? ~~
83 U 1.333364

S~ 32 [~ llego conJ J. tres 9.?222 !\!3
85 U 1.000076

S~ 33 [la del amorj J. ~ 9.??22 !~

87 U 1.000074

SS 34 [la de laJ 2 muerte 0.~Z?2 ~!

89 vida 0.375093

90 U 1.000061

~I 35 [de la muertej J. ~ 0.??22 !~

~~ ~~ ...~-. , ~ ~.~g~~ ~~
~.j .jt) lQe .La v,-aaJ '- ..~.??~~ =~
94 U 1.000059

~5 37 [con tres heridasJ 3 ~ 2.~~~Z ~~
96 viene 0.166799

97 yo 0.1667101

98 U 1.000066

~~ 38 [tres her,-das vienej J. ~ 9.?222 !~

100 U 1.000070

I5I39 [tres her,-das yoJ 1 $ 9.?222 !~
102 U 1.000072

I5~40 [llego con tresJ J. herJ.das 2.?222 ~~ ...
104 U 2.000064 K=4

.

Figure 7: Array allocating the SFSA represented in Figure 6. Only outlined elements are required.
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3.3 Transition Function o: Searching Through the

Array

To complete the representation of the Smoothed SFSA the

transition function o of the Automaton should be defined,

and thus represented, for each state q E Q"' and for each WE L' .

This transition function defined a destination state q J and a

probability P(w/q) associated to each pair(q, w) ~qEQ"' and

~wEL':

t5(q. w) = (qd' P(w / q» 'v' q E QK I\ 'v'w E L' qd E QK (4)

Function 8 (qeif; we~): (deif; Pe[O...I]);

var q-auxeif; P -auxe[O...I];

begin

if we~q then 8p~arrayyrob[q,w] /seen events/

8rarray -dest[q, w];
else P -aux~arrayyrob[q,U]

q-aux~array -dest[q,U];

while W~~q-ar'x do

P -aux~P -aux x arrayyrob[q-aux,U]

q -aux~array -dest[q-aux,U];

end while

8p ~P -aux x arrayyrob[q-aux,w]

8d ~array -dest[q-aux,w];

luf\seen eventsl

was integrated in a CSR system (Rodríguez et al., 1999). Thus,
acoustic models should be integrated with language models
in a unique decoding scheme. As mentioned above, the
syntactic approach allowed to deal with this problem by using
the SFSA presented along the paper. In such an automaton,
each transition was replaced by a chain of Hidden Markov
models representing the acoustic model of each phonetic unit
of the word. Then, the decoding scheme was performed by
using the time-synchronous Viterbi algorithm. In the lattice
the transition through each word ofthe vocabulary should be
evaluated each time the system considers a SFSA transition
o(q/w). Thus, the search function through the proposed array
presented in Figure 8 was used to obtain for state qthe following
state qdand the associated probability P(w/q) for all the words
in the vocabulary .
The corpora consists of a set of simple Spanish sentences
describing visual scenes (Miniature Language Acquisition
task- MLA) and was first presented in English (Feldman et
al. , 1990). The training set consisted in 9150 sentences that
were randomly generated by using a context-free model ofthe
language. It included 14,702 words and a very limited
vocabulary size (29 words). Additional data about k- TSS
language models inferred from this corpus can be found in
(Varona, 2000) and (Varona and Torres, 2000).
A Silicon Graphics O2 with a R10000 processor was used to
recognize 1600 sentences from the MLA task, uttered by 16
speakers. ln order to reduce the computational cost a beam-
search algorithm was applied with two ditferent widths: a narrower
beam factor (bf) ofO.5 and a wider one ofO.7 .The beam-search
algorithm eliminates the less probable paths ofthe trellis.

end if

end O.

Figure 8: Search function through the array computing o.

When seen events appear the destination state q J can be found
directly as the destination index of the array position (q, w)
(see Figure 7). In the sarne way the value of P(w/q), can be
directly computed from training sarnples, according to the
syntactic back-off smoothing procedure (Bordel et a/. , 1994)
forwE~ .It is representedas the probabilityvalue atthe arrayq
position (w, q) (see Figure 7). However when unseen events
appear both qJand P(w/q) values are not directly found in the
array and a simple search function through the array is required.
This function, represented in Figure 8, search backwards
across the back -off states, i.e. transitions through the U symbol,
until the word w is found as a seen event for a state l¡ in a
lower level (k<K), i.e., WE~q. State q will be then $e searched
destination state qJ" The P(w/q) value should be computed
according to Equation (3) in this case. Thus, Equation (3) is
recursively calculated while qJ is found by the search function.
This procedure, that represents Equation (4), is described by
Function o in Figure 8: oJ stands for the destination state qJ
and Op for the probability P(w/q).

Table 1 shows the word error rates (WER) for each different
values of K. This Table also shows the average time per frame
(A TpF) (msec) needed to decode a sentence (seconds) and
the average number of alive nodes at each frame (ANANpF)
in the lattice. These nodes include acoustic and LM states.
Memory requirements (in Kb) and the number of states ofthe
SFSA lifl are also provided for each value ofK.

Table 1: W ordError rates for integrated models: K=2, 6.

IqK' Kb ATpF(msec) I WERK ANANpF

bf=O.

39 64

47 80

50 87

52 92

I f=O.5 I f=o.slbf=O.71 f=o.slbf=O. í

2

3

4

5

31

173

643

180

3.0
I

11.9 ,

35.6

93.0

3

3

4

4

5.01

4.83

4.33

3.64

4.60

4.36

3.62

3.26

4

)
6

7

8

546 451 218.6 98 5 7 3.51 2.684 Experimental Assessment
8

An experimental evaluation ofthe proposed St:noothed SFSA
representation was carried out over a Spanish corpora. The
Smoothed SFSA, represented as proposed along the paper,

Table 1 shows that the use of the proposed Smoothed SFSA
representation provides additional time reductions since the
search function trough the array (Figure 8) is only needed for
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active paths. This Table also shows that Smoothed SFSAs
with high values ofK need bigger amount of memory but they
can be easily integrated in a CSR system with not
significatively increase ofthe decoding time, since the average
number of active nodes did not increase as IQKI did.
Recognition rates show that the CSR system performance
increased with K for this task.

5 Concluding Remarks

The use of smoothed k- TSS regular grammars a1lowed to obtain
a deterministic, and hence unambiguous, Stochastic Finite
State Automaton (SFSA) integrating K k- TSS models into a
self-contained model. After applying a back-off smoothing
technique, unseen events have a unique transition to a back-
off state in a more general k- TSS model. So that, the Smoothed
SFSA can be easily represented in an efficient way, where the
probability distribution and transitions were represented in a
simple array of an adequate size. A search function has been
developed to manage the proposed representation allowing
the fmal integration ofthe k- TSS model into a CSR system.
An experimental evaluation ofthe proposed Smoothed SFSA
representation was carried out over a Spanish recognition task.
These experiments showed that accurate syntactic models
could be efficiently represented and integrated in CSR

systems.
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