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Abstract

k-Testable Languages in the Strict Sense (k-TSS), which are
a subclass of regular languages, are used in this work to be
integrated in a Continuous Speech Recognition (CSR)
system. An efficient representation of the corresponding
Stochastic Finite State Automaton (SFSA), that integrates K
k-TSS models into a self-contained model, is proposed in
this work. The whole model is represented in a simple array
of an adequate size that can be easily handled at decoding
time by a simple search function. An experimental
evaluation of the proposed SFSA representation was
carried out over an Spanish recognition task. These
experiments showed that syntactic models could be
efficiently represented and integrated in CSR systems.

Keywords: Continuous speech recognition, language
modeling, syntactic pattern recognition.
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1 Introduction

Statistical methods have been extensively used to generate
Language Models (LM) to be integrated in Continuous
Speech Recognition (CSR) Systems. They are based on the
estimation of the probability of observing a given lexical
unit, conditioned on the observations of N preceding lexical
units (N-gram models): P(w/w,..w,;). However, in
practice, the use of this kind of models is reduced to low
values of N, exclusively bigrams and trigrams in really
large-vocabulary recognition tasks (Placeway et al., 1993).

Since the language constraints could be better modeled
under a Syntactic approach, some formalisms based on
regular grammars and context free grammars have also
been used in LM. However, they have not extensively used
since they present computational complexity problems.
Moreover, full integration with the acoustic models in a
CSR task and automatic learning from samples have been
considered very difficult tasks under these formalisms
(Segarra, 1993).

k-Testable Language in the Strict Sense (k-TSS) (Bordel et
al., 1997) are used in this work to be integrated in a CSR
system. k-TSS Languages are a subclass of regular
languages and can be inferred from a set of positive
samples by an inference algorithm (Garcfa and Vidal,
1990). £-TSS language models can be considered as a
syntactic approach of the well-known N-grams. In fact,
Finite States Networks are nowadays used to represent
these statistical models. In such a case, similar probability
distributions can be obtained by N-grams and by k-TSS
language models (Segarra, 1993) (Varona, 2000).
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The use of smoothed k-TSS regular grammars allowed to
obtain a deterministic Stochastic Finite State Automaton
(SFSA) integrating K k-TSS models into a self-contained
model (Varona and Torres, 1999). The aim of this work
was to show the ability of this syntactic approach to be well
integrated in a CSR system. For this purpose an efficient
representation of the model in a simple array is proposed in
this paper. This structure can be easily handled at decoding
time by a simple search function through the array allowing
models with high values of K to be well managed. Some
decoding experiments over a Spanish recognition task
showed that syntactic models can be efficiently represented
and integrated in CSR systems.

2 The Stochastic Finite State
Automaton (SFSA)

The Smoothed SFSA is a self-contained model that
integrates K k-TSS automata, where k=1,..., K, in a unique
automaton. It is defined by a five-tuple (2, Q", g,, ¢, &)
where:

-Z=Z U {$} being Z = {w}, j = 1...IZ|, is the vocabulary,
i.e. the set of words appearing in the training corpus. The
nil symbol $ was included in the training corpus to isolate
each sentence.

- Q" is the state set of the automaton. Each state represents
a string of words ww_ .w, k = 1.K-1, with a
maximum length of K-1, where i stands for a generic index
in any string w,...w,... appearing in the training corpus. Such
a state is labeled as w;':,t. States representing the initial
strings of training sentences are labeled as $w; "+ where k=
1...K-2 to guarantee a maximum length of K-1. A special
state labeled as A represents a void string of words.

- The automaton has a unique initial and final state g, = g, €
Q" which is labeled as $.

- & is the transition function. 8% Q x(Z U {$})) » OF
x [0=..1]. 8(g, w) = (q,, P(w/q)) defines a destination state
g, € Q" and a probability P(w/q) € [0...1] to be assigned to
each element (g, w) € Q° x(Z U ($}). Each transition
represents a k-gram, k = 1...K; it is labeled by its last word
w, and connects two states labeled up to with K-1 words. As
an example, transitions corresponding to strings of words
of length K connecting states associated to string lengths K-
1 are defined as: '

5 (w'jx_n,m)=(u;4x_n)+n,P(m/ W’::(IK_I))) 0y

The whole definition of the Automaton is provided in

(Varona, 2000). Figure 1 represents the K-grams w,_, ,w, .
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prWey and w o w, . ..w, labeling' two states of the
automaton. When w, is observed an outgoing transition

from the first to the second state is set and labeled by w,.

Figure 1: Two states of the SFSA representing two K-grams.
Transitions are labelled by words appearing in the training sample
after the K-gram labelling the source state.

Such a model can only associate a probability to any string
of words that had been observed in the available samples,
i.e., seen events. However, a probability need also to be
associated to those events not represented in the training
corpus, i.e., unseen events. To deal with this problem, a
syntactic back-off smoothing procedure was developed in
previous works (Bordel et al., 1994). Under this formalism,
the probabilities to be associated to the set of words
appearing after the string labeling state g in the training
corpus - the vocabulary of the state X, - are explicitly
estimated according to the counts N(w/q), which are the
number of times that word w appears after the string
labeling state g. However, this counts are reduced to save
some probability mass to be redistributed to the (IZI - IZ,1)
unseen events associated to state g. Then, under the
syntactic back-off smoothing (Bordel et al, 1994), the
transitions probabilities corresponding to those events not
represented in the training corpus, are estimated according
to more general probability distributions in k-TSS models,
with k<K. These transitions can be grouped into a unique
transition to a back-off state b, associated to each state g.

Thus, each state of the automaton g € Q¥ should add a new
transition to its back-off state b,

5%(q:U) =(b,, P(b, 1q)) @

where U represents any unseen even associated to state g,
which is labeled by a word w; € (2-Z,). The back-off state
b, associated to each state g can be found in the (k-1)-TSS
submodel.

Then, the probability to be associated to each event not
represented in the training corpus P(w/q) Vw; € (Z'-Z) is
estimated according to:

Pw,1 )= P(b,1q)Pw, 1 b) Yw,eE-Z,) (3
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A complete presentation of the syntactic back off scheme
can be found in (Bordel et al., 1994) and (Varona, 2000).
Flgure 2 shows such a structure for a state ¢ labeled as
W k. The transitions labeled by the IZ,| words observed

at training time after the K-gram labeling g connect it to

other states in the same K-TSS submodel. Transition

labeled by U connects state g to its back-off state,
Wi k4ya 10 the (K-1)-TSS submodel.

3 An Efficient Representation of the
Smoothed SFSA

The main advantage of this formulation is that it leads to a
very efficient representation of the model parameters
learned at training time, that are probability distribution and
model structure. In this Section the procedure to obtain
such a representation is presented. In a first step a finite
network represented the structure of the Smoothed SFSA.

(R»T):TS submod
(K-2)_TS submedel

Figure 2: Transitions labelled by seen events(wj € Zg) connect

each state to states in the same K-TSS submodel. Transition
labelled by unseen events connects it to its back-off state in the
(K-1)-TSS submodel.

This network was derived from an initial trie built from the
training set. This procedure is shown in Section 3.1. The
initial trie nature of the network let to allocate both, the
structure of the Smoothed SFSA and the probability
distributions in a simple array, presented in Section 3.2. To
complete the representation of the Smoothed SFSA the
transition function § of the Automaton defined in Section 2
should be defined, and thus represented, for each state

ge Q" and for each weX'. This goal is achieved by a simple

search function through the proposed array, which is presented
in Section 3.3.

3.1 A Finite Network Representing the
Structure of the Smoothed SFSA

In a first step, the data obtained from the learning sample
are stored in a trie structure with K-/ levels. Each node at
each level k, with k = 1..K-1, is associated to a state of the
Smoothed SFSA labeled by a string of words of length &,

,_k, that has been observed in the training set, that is, seen
events. The number of children of each node q —w,-_k is
equal to the number of words appearing after wf:,]( in the
training sentences, that is, IZIII. The root of the trie is
associated to state A representing a void string of words.
Level one represents the 1-TSS model and consists of IZ
nodes corresponding to each word of the vocabulary. As
mentioned in previous Section, the automaton has a unique
initial and final g, = g, which is labeled as $. This fact leads
to consecutively parser sets of sentences that are forced to
start and finish with $. This state is different to the root
node of the trie, labeled as A, since the probability P(w/))
is the estimated probability P(w), whereas P(w/$) is the
probability associated to w, being the initial word in a
sentence. As a consequence, P($/A) would be the
probability of a sentence and would only be considered
when parsing a new sentence. Then, when each sentence is
individually parsed, this link can be removed. In such a
way, the original trie is transformed in a bi-trie where A and
$ are the root nodes but only $ represents the initial state of
the automaton.

The procedure to represent the Smoothed SFSA efficiently
is illustrated with a simple example. A famous poem by the
Spanish poet Miguel Herndndez has been selected to act as
the sample text corpus. Figure 3 shows this poem, the
corresponding training set R* and vocabulary Z.

Figure 4 shows the bi-trie for K=4 when the training set R
and the vocabulary T of Figure 3 were used. In this Figure,
the corresponding nodes of the bi-trie represent all the
states of the automaton. Transitions from state labeled by A

which represents a void string of words, are represented by
links between the root A and its children nodes. Links
connecting node $ to its children represent transitions from
the initial state. Transitions that correspond to strings of
words shorter than K are represented by IZ) links
connecting each node of the k=1..K-2 levels to its Iz}
children. Nodes of K-1 level represent the states associated
to word strings of length equal to K-1 labeled as w, _( K-1)-

For the sake of clarity, transitions to the final state
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established for all nodes in the bi-trie each time the symbol
$ appears in the training corpus are not drawn in Figure 4.

con tres heridas

la del amor

la de la muerte

la de la vida

con tres heridas viene
la de la vida

la del amor

la de la muerte
con tres heridas yo
la de la vida

la de la muerte

la del amor

Miguel Herndndez

Nodes representing states with transitions to node labeled
as $ are outlined instead.

[$ilego con tres heridas $ la del )
| amor $ la de la muerte $ la de la|
Ivida $ con tres heridas viene $ ‘

Rt ={ladelavida $ la del amor $la }
| de la muerte $ con tres heridas |
lyo $lade lavida$ladela |
lmuerte $ la del amor $

la, de, del, amor, muerte, vida,
llego, con, tres, heridas, viene, yo

Figure 3: Selected training corpus to illustrate the procedure to represent the Smoothed SFSA efficiently

initial S
— = Pigs

Ak

m:"l" intermal nodes @ nodes with transitions (o the final state labelled
-.'- - 5

transitions from level k-1 to level k with k=2 | K

Figure 4: Bi-trie directly obtained from the training set R™ of Figure 3 after the first step of the procedure for K=4 model.
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initiz]

slale

internal nodes

transitions from level k-1 to level k with k=2
K

nodes with transitions to the final state labelled as $

transitions between nodes of level K

Figure 5: The network representing the structure of the non smoothed SFSA (K=4) obtained from the training set R* of Figure 3.

internal nodes

nodes with transitions to the final state labelled as §

- =)

transitions from level k-1 to level k with k=2 . K
transitions between nodes of level K

back off transitions

Figure 6: The complete network representing the stmcture of the Smoothed SFSA (K=4) obtained from the training set R* of
Figure 3.

To complete the representation of the SFSA, transitions
that correspond to strings of words of length X
connecting states associated to string lengths equal to K-1
need also to be added. These transitions are represented
by links between nodes of the K-1 level labeled as

i1
Witk-1-

The finite network obtained by including these transitions
represents the structure of the complete non-smoothed
SFSA. Figure 5 shows such a structure for the training
corpus of Figure 3.

In a final step, the smoothing technique is applied to
each node in order to obtain a network representing the
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Smoothed SFSA. As a consequence, new links representing
back-off transitions should be created. As mentioned above,
the back-off state b associated to each state g can be found
in the (k-1)-TS modél. Thus, the destination node for this link
should then be found in the previous level of the trie. Figure 6
shows the finite network representing the structure of the
Smoothed SFSA (K=4) for the training corpus in Figure 3.

3.2 A Simple Array to Allocate the Smoothed
SFSA

A simple array was used to allocate all the parameters of the
model. A state of the automaton is represented by |Z]+1

array rows, each of one representing an outgoing transition.
Each position represents a pair (q, w) where g € Qfandwe X,

v {U}.

It consists of four elements:

- a short integer, which represents a transition labeled by a
word w € I, or by the symbol U that stands for any unseen
event.

- a double, which represents P(w/q) ©>w; € Z, or P(b/q) for

unseen events.

- a short integer, which represents the value of [Z,].

- ashort integer, which represents the explicit link to the
first child of q or to its back-off state b,

Figure 7 shows this table representing the Smoothed SFSA in
Figure 6. In Figure 7 some additional information has also be
included to clarify the meaning Of each array component: state
number #q and its label, the word label and the table index.
However, only four elements, #w, P(w/g),|Z | and the index of
the destination position, need to be handled. For the sake of
clarity each transition is represented by the label of the last
word of the involved string, (label(w)), instead of by its integer
index (#w). In this column symbol U represents any unseen
even associated to state g which is labeled by a word w, €
(E’—Zq). The destination of this transition is the corresponding
back-off state b and the associated probability P(b /q) was
calculated according to syntactic back-off smoothing
procedure (Varona and Torres., 1999).

ind #q 1label{q) 1%, label(w) P(w/q) de #x-T88 53 18 [la del] 1 amor 0.7500 86
T T ™ 127 1a 3.333 17 51 u 1.0000 32
2 de 0.1333 22 515 113 d&] T 1a 0.8571 68
3 con 0.0667 24 55 U 1.0000 22
: ., D06 2 ST T PR
; Smer  0.0667 3¢ 59721 (13 vidal T3 0. 7o00 13
. U .
8 muerte 0.0667 36 g1 27 Tde 131 3 muerte 0.3750 01
) vida  0.080 29 62 vida 03750 93
. 63 U 0.3654 17
1 Yoogo 0.0225 42 k-1 6173 Teon tres] T heridas 0.7500 35
- U .
1320 18] 3 la 08000 46 66 21 [tres heridas] T35 01667 13
14 con 0.1333 49 67 viene 0.1667 99
12 ilego  0.00873 68 yo 0.1667 101
: 69 U 1.0000 28
159 el 4 3 0.315% 23 70775 (heridas vTene] T % 0.5000°13
* U .
12 maerts  0.1578 29 77 7% [heridas yol T3 0.5000 13
3 v 0 3388 3 73 U 1.0000 42
35 % [del 1 1a 5.8571 61 a2 [del amor] 1y 0.7500 13
23 U 0.2143 1 :

TE 78 TIlego conl T tres 0.5000 103
¢ > [leonl T tres  0.7300°04 77 ° v 2.0000 24~ K=3
76 6 Ttres] T Theridas 0.7500 68 TE 25 15 1a de) T 0-857188
%% ¢ 02812 s B0 30 1% Ia dell T amor 0.7500 86

7 heridas] 3 . 7 .
29 [ viene 0.1667 70 81 U__ 1.0000 53
30 yo 0.1667 72 g% 31 [$ con tres] 1 Ber:.das ({ggg; gi
31 U 0.5232 1 :
325 Tden] T amor 0. 7500 14 5137 % ITego con] T tres 0. 30007103
33 U 0.2679 1 :
315 Tamor] T3 0.7500 13 BE 33 11a del amor] T s 0.750013
35 U 0.2500 :
3¢ 10 [musrce] T3 57500 13 88 34 [la de 13 7 muerte 0.3750 91
37 U 0.2500 1 89 vida 0.3750 93
T 07500 13 :
%g 1L Tvidal ISJ 0.2500 1 g% 35 (de la muerte] 1 § ggggg é%
T 0. 7500 13 U .
1017 Tviene] A 52290 1 T3 3% e Ts vida) T35 0.7500°13
T 7500 13 u .
15 el S 0 2500 1 3L —TT Tcon tres heridas] 3 5. 0 1667 13
74 14 [1lego] T con 0.5000 76 96 viene  0.1667 99
45 U 0.5357 1 K=2 gg ¥ g-%’ggg %gl
ﬁg 15 1slal 2 g:l 83%3‘;’ gg 71580 38 |tres heridas viene]l ?] ggggg %g
U T—trer 0 2687 B2 T01 39 Teves herides yol 1§ 0:5000 13
50 U 1.3333 24 : :

T0340 [llego con tres] 1 heridas 0.5000 I3

21 17 1sllegol con 03000 &4 10g 0 eS v 210000 64 K=4

Figure 7: Array allocating the SFSA represented in Figure 6. Only outlined elements are required.
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3.3 Transition Function 6: Searching Through the
Array

To complete the representation of the Smoothed SFSA the
transition function & of the Automaton should be defined,
and thus represented, for each state g Q¥ and for each weX’.
This transition function defined a destination state g, and a
probability P(w/q) associated to each pair (q, w) «>ge Q¥ and
owel’:

8g.w)=(qs Pw! q) Vge AVweY q,e€Q"@

Function §(geQ; weZ): (deQ¥; Pe(0...1]);
var g _auxeQf; P_auxel0..1];
begin
if weX, then Jp«array_problq,w]
dyearray_dest[q,w);
else P_aux<array problq,U]
q_aux<array_dest[q,U];
while wg¢Z, ,, do
P_aux<«P_aux x array_problq_aux,U]
q_aux<array_destlq_aux,U};
end while
8p «~P_aux x array_problq_aux,w]
8 «array_destlq_aux,w};

/seen events/

/unseen events/

end if
end J.

Figure 8: Search function through the array computing 3.

When seen events appear the destination state g, can be found
directly as the destination index of the array position (g, w)
(see Figure 7). In the same way the value of P(w/q), can be
directly computed from training samples, according to the
syntactic back-off smoothing procedure (Bordel et al., 1994)
for weZ It isrepresented as the probability value at the array
position (w, q) (see Figure 7). However when unseen events
appear both g, and P(w/q) values are not directly found in the
array and a simple search function through the array is required.
This function, represented in Figure 8, search backwards
across the back-off states, i.e. transitions through the U symbol,
until the word w is found as a seen event for a state g in a
lower level (k<K), i.e., weZ . State g will be then the searched
destination state g, The P(w/q) value should be computed
according to Equation (3) in this case. Thus, Equation (3) is
recursively calculated while g, is found by the search function.
This procedure, that represents Equation (4), is described by
Function & in Figure 8: §, stands for the destination state g,
and 3, for the probability P(w/q).

4 Experimental Assessment

An experimental evaluation of the proposed Smoothed SFSA
representation was carried out over a Spanish corpora. The
Smoothed SFSA, represented as proposed along the paper,

was integrated in a CSR system (Rodriguez et al., 1999). Thus,
acoustic models should be integrated with language models
in a unique decoding scheme. As mentioned above, the
syntactic approach allowed to deal with this problem by using
the SFSA presented along the paper. In such an automaton,
each transition was replaced by a chain of Hidden Markov
models representing the acoustic model of each phonetic unit
of the word. Then, the decoding scheme was performed by
using the time-synchronous Viterbi algorithm. In the lattice
the transition through each word of the vocabulary should be
evaluated each time the system considers a SFSA transition
8(g/w). Thus, the search function through the proposed array
presented in Figure 8 was used to obtain for state g the following
state g, and the associated probability P(w/q) for all the words
in the vocabulary.

The corpora consists of a set of simple Spanish sentences
describing visual scenes (Miniature Language Acquisition
task - MLLA) and was first presented in English (Feldman et
al., 1990). The training set consisted in 9150 sentences that
were randomly generated by using a context-free model of the
language. It included 14,702 words and a very limited
vocabulary size (29 words). Additional data about £-TSS
language models inferred from this corpus can be found in
(Varona, 2000) and (Varona and Torres, 2000).

A Silicon Graphics O, with a R10000 processor was used to
recognize 1600 sentences from the MLA task, uttered by 16
speakers. In order to reduce the computational cost a beam-
search algorithm was applied with two different widths: a narrower
beam factor (bf) 0f 0.5 and a wider one of 0.7. The beam-search
algorithm eliminates the less probable paths of the trellis.

Table 1 shows the word error rates (WER) for each different
values of K. This Table also shows the average time per frame
(ATpF) (msec) needed to decode a sentence (seconds) and
the average number of alive nodes at each frame (ANANpF)
in the lattice. These nodes include acoustic and LM states.
Memory requirements (in Kb) and the number of states of the
SFSA |Q"| are also provided for each value of K.

Table 1: Word Error rates for integrated models: k=2, 6.

Kk | 12| Kb | ANANpF | ATPF (e | WER
£=0.5|bf=0. | f=0.5|bf=0.7 £=0.5/bf=0.
2 31| 30|39 64| 3 |4 |501]4.60
3 [ 173 ]| 119 47 | 80 | 3 |5 |483]|436
4 | 643 ]| 356| 50 | 87 | 4 | 6 |433|362
5 1808 930 52 | 92 | 4 | 7 [3.64(3.26
6 4518 2186 54 | 98 | 5 | 7 [3.51(268

Table 1 shows that the use of the proposed Smoothed SFSA
representation provides additional time reductions since the
search function trough the array (Figure 8) is only needed for
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active paths. This Table also shows that Smoothed SFSAs
with high values of K need bigger amount of memory but they
can be easily integrated in a CSR system with not
significatively increase of the decoding time, since the average
number of active nodes did not increase as |QK| did.
Recognition rates show that the CSR system performance
increased with K for this task.

5 Concluding Remarks

The use of smoothed k-TSS regular grammars allowed to obtain
a deterministic, and hence unambiguous, Stochastic Finite
State Automaton (SFSA) integrating K &-TSS models into a
self-contained model. After applying a back-off smoothing
technique, unseen events have a unique transition to a back-
off state in a more general k-TSS model. So that, the Smoothed
SFSA can be easily represented in an efficient way, where the
probability distribution and transitions were represented in a
simple array of an adequate size. A search function has been
developed to manage the proposed representation allowing
the final integration of the k-TSS model into a CSR system.
An experimental evaluation of the proposed Smoothed SFSA
representation was carried out over a Spanish recognition task.
These experiments showed that accurate syntactic models
could be efficiently represented and integrated in CSR
systems.

6 References

Placeway, P., R. Schwartz, P. Fung and L. Nguyen, “The
estimation of powerful Language Models from small and large
corpora,” Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, vol. 11, pp. 33-36, 1993.

Segarra, E. “Una Aproximacién Inductiva a la Comprension
del Discurso Continuo,” Ph Thesis. Universidad Politécnica
de Valencia, 1993.

Garecia, P. and E. Vidal, E., “Inference of k-testable languages
in the strict sense and application to syntactic pattern
recognition,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 12,n°9, pp. 920-925, 1990.

Bordel, G., A. Varona and I. Torres, “K-TLSS(S) Language
Models for Speech Recognition”. Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, vol. 2, pp. 819-822, 1997.

Bordel, G., L. Torres and E. Vidal, “Back-off smoothing in a
syntactic approach to Language Modelling”. Proc.
International Conference on Speech and Language
Processing, pp. 851-854, 1994,

Feldman, J.A., G. Lakoff, A. Stolcke and S.H. Weber,
“Miniature Language Acquisition: a touch-stone for
cognitive science”. Technical report, TR-90-009. ICSI,
Berkeley, 1990.

Rodriguez, L.J., I. Torres, J.M. Alcaide, A. Varona, K. Lopez
de Ipifia, M. Pefiagarikano, G. Bordel “An integrated system
for Spanish CSR tasks”. Proc. of EUROSPEECH, vol 2, pp
951-954,1999.

Varona, A. and L. Torres “Using Smoothed 4TSS Language
Models in Continuous Speech Recognition”, Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, volll, oo. 729-732,
1999.

Varona, A “Modelos k-explorables en sentido estricto
integrados en un sistema de reconocimiento automatico del
habla”. Ph Thesis, Universidad del Pais Vasco (Spain), Abril,
2000.

Varona, A. and L. Torres “Evaluating pruned k-TSS language
models: perplexity and word recognition rates”. Being
published in Pattern Recognition and Applications, Ed. los
Press, The Netherlands, 2000.

Inés Torres: was born in the Basque Country, Spain. She received the degree in physics from the University of the
Basque Country in 1981 and the Ph.D. degree from the same university in 1991. In 1982, she joined the Electricity

—_— (ISCA).

affiliate society of IAPR.

244

and Electronics department of the University of
the Basque Country. She has been teaching computer science, first as an Associate Professor and since 1996 as a
Titular Professor. She has also been the head of the Automatic Speech Recognition group in the University of the
Basque Country. Her areas of interest include all aspects of Automatic Continuous Speech Recognition, e.g., signal
| processing, search strategies and language modeling.
| Dr. Torres is a board member of the Spanish Society for Pattern Recognition and Image Analysis (AERFAD), which
| is an affiliate society of IAPR, and she is also a member of the International Speech Communication Association

Amparo Varona: was born in the Basque Country, Spain. She received the degree in physics from the University of
the Basque Country in 1993 and the Ph.D. degree from the same university in 2000. Since February 1996, she has
been teaching computer science as Associate Professor in the

Electricity and Electronics Department of the University of the Basque Country. Her areas of interest include all
aspects of Automatic Continuous Speech Recognition, e.g., search strategies and language modeling.

Dr. Varona is a member of the Spanish Society for Pattern Recognition and Image Analysis (AERFAI), which is an



