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ABSTRACT1

Continuous Speech Recognition (CSR) systems require
a Language Model (LM) to represent the syntactic
constraints of the language. A sub-class of the regular
languages, the k Testable in the Strict Sense (k-TSS)
languages, has been used to generate LMs. Then, a
smoothing technique needs to be applied to also
consider events not represented in the training corpus.
In this work, a new syntactic backing off smoothing
approach, the Delimited discounting, was applied to
several pruned and no pruned k-TSS LMs. Delimited
discounting deals with the Turing discounting problems
while keeping the Katz’ smoothing schema. The
experimental evaluation was carried out over a Spanish
speech application task, showing that an increase of
the test set perplexity of a LM does not always mean a
degradation in the model performance when integrated
in a CSR system. Besides, there is a strong dependence
between the amount of probability reserved by the
smoothing technique to be assigned to unseen events
and the value of the balance parameter applied to the
LM probabilities in the Bayes´s rule needed to get the
best system performance.

1. INTRODUCTION

Continuous Speech Recognition (CSR) systems require
a Language Model (LM) to integrate the syntactic
and/or semantic constraints of the language. Both
statistical (typically N-grams) and syntactic
approaches have been extensively used to generate
LMs. It is well known that language constraints could
be better modelled under a syntactic approach [1], but
the LM generation from samples and the full
integration with the acoustic models have been usually
considered as difficult tasks under these formalisms [2].
The use of stochastic automata to represent statistical
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language models has been recently proposed [3] [4] [5]
with the aim to handle accurate language models in a
one-step decoding procedure. A syntactic approach
based on regular grammars, the k-Testable in the Strict
Sense (k-TSS) languages [6] has also been proposed in
previous works [7] to generate LM. They are a subclass
of regular languages and can be considered as a
syntactic approach of the well-known N-grams models.

In this work, a pruning procedure was applied to k-TSS
models in order to reduce the size of the model and
memory requirements, while keeping its accuracy. The
pruning procedure consisted in removing infrequent k-
grams from the model. However, the pruning thresholds
should be experimentally evaluated since the goal of
any pruning procedure is to find a correct balance
between the memory requirements of the model and its
performance.

A major problem to be solved when using a LM is the
estimation of the probabilities to be assigned to those
events not represented in the training corpus, that is,
unseen events. Thus, a smoothing technique needs to
be applied when integrating a LM in a CSR system. In
previous works [8] a syntactic backing-off smoothing
was proposed and evaluated using k-TSS language
models. The recursive schema required by the
smoothing procedure has been well integrated in the
finite state formalism and, thus, an efficient
implementation of the backing-off mechanism was
achieved [7].

Smoothing techniques are based on a discounting-
distribution schema: a mass of probability needs to be
discounted from seen events to further be assigned to
unseen events. In previous works, a Witten-Bell based
discounting procedure was proposed and evaluated over
no pruned [7] and pruned [9] models. In this approach,
the discounting factor was applied to the whole set of
seen events in the training corpus [10]. As a
consequence, the mass of probability to be assigned to
unseen events could be overestimated. Thus, a new
proposal, based on the well-known Turing discounting



[11], the Delimited discounting, has been developed
and presented in this work. In this case, discounting
factors were only applied to those events scarcely
observed in the training corpus.

The must reliable way to evaluate the real performance
of a LM is to measure the obtained Word Error Rates
(%WER) after integrating it into a CSR system.
However, the most common way to assess the goodness
of different LMs is the evaluation of the test set
perplexity, even if the relationship with the acoustic
models is not considered. So that, some important
points related to a LM generation (like smoothing
techniques, pruning thresholds), could not be always
well assessed by the perplexity [12]. Thus, in this work
both, the test set perplexity and %WER, were
considered and compared to evaluate the behavior of
Delimited discounting, developed under the k-TSS
language modeling formalism. After this evaluation, the
ability of the test set perplexity to predict the real
behavior of a smoothing technique when working in a
CSR system could be questioned.

CSR systems are invariably based on the well-known
Bayes’ rule. Bayes’ rule maximizes the product of the
probability of a sequence of acoustic observations A
given a sequence of words W, P(A/W), and the
probability that the word sequence W will be uttered,
P(W). However it is well known that the best
performance of a CSR system is obtained when P(W)
is modified by introducing a balance parameter α  in
the following way: P(W)α [13]. The effect of scaling
LM probabilities, using no pruned and pruned k-TSS
language models, was also evaluated in this work
showing a strong relationship between the behavior of
the smoothing technique and the value of the scaling
factor required to obtain the best CSR system
performance.

In Section 2, the syntactic language model formalism
is briefly described. In Section 3, the Delimited
discounting is presented within the backing-off
smoothing technique. Section 4 deals with the
experimental evaluation of several pruned smoothed k-
TSS LMs in terms of both, perplexity and %WER,
along with the effect of scaling the LM probabilities.
These experiments were carried out over a Spanish
speech application task (1,208 words). Finally, some
concluding remarks are presented in Section 5.

2. - THE SYNTACTIC LANGUAGE MODEL.

A syntactic approach of the well-known N-grams
models, the k-Testable Language in the Strict Sense
(k-TSS) has been used in this work to be integrated in
a CSR system. The use of k-TSS regular grammars
allowed to obtain a deterministic Stochastic Finite
State Automaton (SFSA) integrating K k-TSS models
(with k=1, 2..K) into a self-contained model [7]. In such
a model, each state of the automaton represents a

string of words wi-kwi -(k -1)...wi -1, k = 1...K-1, with a
maximum length of K-1, where i stands for a generic
index in any string w1...wi ... appearing in the training
corpus. Such a state is labeled as wi k

i

−
−1 . Each transition

represents a k-gram, k = 1...K; it is labeled by its last
word wi  and connects two states labeled up to with K-1
words. As an example, transitions corresponding to
strings of words of length K connecting states
associated to string lengths K-1 are defined as:
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where Σ is the vocabulary, that is, the set of words
appearing in the training corpus, N w wj i K

i( / )( )− −
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1

1  is the

number of times the word wj appears at the end of the
K-gram w

i -(K-1)
...w
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, that is the count associated to the

transition labeled by wj coming from state labeled as
wi K

i
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1 .

The whole and detailed definition of the Automaton,

i.e. initial and final states, unigram representation, etc.,

can be found in [7]. As an example, Figure 1 represents

the K-grams wi K

i

− −
−

( )1

1
 and wi K

i
− − +( )1 1 labeling two states

of the automaton. When wi is observed an outgoing

transition from the first to the second state is set and

labeled by wi .

This approach represents a syntactic formalism of the
well-known N-grams derived from the formal languages
theory [6]. Moreover, it has been shown [14] that the
probability distribution obtained trough and N-gram
model is equivalent to the distribution obtained by a
stochastic grammar generating k-TSS language, where
k play the same role as N does in N-grams. At this
point, choosing k-TSS or N-grams could be just a
matter of representation convenience [8] [14]. It is well
known that the use of grammar formalism presents
several advantages. However, the lack of syntactic
smoothing techniques and the problems arising when
integrating the smoothed SFSA with acoustic models
have restricted their use in CSR applications [3] [4]
[14]. In such a case, several approaches to obtain
approximate N-grams probability distributions have
been proposed and typically managed [3] [4] [10] [15].
Nevertheless, in previous works a very compact
representation of the k-TSS SFSA has been proposed
[7] [8] [9]. This compact structure is dynamically
expanded at decoding time to implement the real back-
off mechanism. This proposal, as well as the new



K
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Figure 1: Two states of the K-TSS automaton labelled by K-
grams wi-(K-1) wi-(K-1)+1...w (i-1)  and wi-(K-1)+1...w i labelling two states
of the automaton. Transitions are labelled by words appearing
in the training sample after K-grams labelling the source
state.

syntactic smoothing presented in this work, allowed an
efficient use of SFSA in CSR systems while keeping
the probability distributions as they were defined by
smoothing techniques.

3.- THE SMOOTHING TECHNIQUE

The probability associated to each transition
representing seen events can be estimated under a
maximum likelihood criterion (see Equation 1).
However, a probability need also to be associated to
those events not represented in the training corpus, i.e.,
unseen events. To deal with this problem, some
probability mass should be discounted from observed
events and then redistributed over unseen ones using
some smoothing procedure. Backing-off smoothing was
chosen in previous works [8] because the involved
recursive scheme has been well integrated in the finite
state formalism [7]. The syntactic approach suggested a
state-dependent estimation of the total discount and,
consequently, the symmetry principle was locally
applied [8]. Thus the modified probability P(w/q) to be

associated to a transition δk(q, w) = (q´, P(w/q)) is

estimated according to:
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where Σ is the vocabulary of the task, that is, the set of
words appearing in the training corpus; Σq is the

vocabulary associated to state q and consists of the set
of words appearing after the string labeling state q, i.e.
words labeling the set of seen outgoing transitions from
state q; N(w/q) is the number of times that word wi

appears after the string labeling state q and
N q P w q

w q

( ) ( / )=
∀ ∈∑
∑ .

P(w/bq) is the estimated probability associated to the

same event in the (k-1)-TSS model. In this schema, (1-
λ) represents the discount factor, that is, the amount of
probability to be subtracted  and then be redistributed
among unseen events. Figure 2 represents this schema
for a state q labeled as wi k

i
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Figure 2: |Σq| seen events and |Σ|-|Σq| unseen events can be

found at each state q labelled as wi k
i
− −
−

( )1
1

. The probability

associated to unseen events is recursively obtained from less
accurate models (k-1, k-2,…1) in back-off smoothing.
Equation 2 is used to discount and redistribute a certain mass
of probability.

Rigorous studies of several backing-off smoothing
techniques could be found in [15] and [16]. On the one
hand, the discounting factor (1-λ) could be applied to
the whole set of seen events in the training corpus, as it
is suggested in Equation 2. Within this classification,
Absolute and Linear discounting are classical proposals
in which the discounting factors depend on respective
parameter values, whereas the Witten-Bell discounting
is a proposal which does not depend on any parameter.
On the other hand, discounting factor could be only
applied to the scarcely seen events: Katz discounting.

In previous works [7] [8] [9], the Witten-Bell
discounting was experimentally compared to other
classical back-off methods leading to a significant
decrease in test-set perplexity. However, because of
applying the discounting factor to the whole set of seen
events, i e, ∀ ∈∑w q , the mass of probability to be

assigned to unseen events could be overestimated when
using a smoothed k-TSS in a CSR system. This fact
was observed using both no pruned [7] and pruned
models [9]. Thus, in this paper a new proposal, the
Delimited discounting was developed. Delimited
discounting keeps the Katz discounting [11] philosophy
subtracting a mass of probability only from scarcely
seen events.

Delimited discounting (Dd).

The scheme devised by Katz [11] combines Turing
discounting with backing-off. According to this
formalism the probability associated to events
occurring more than a fixed number of times, say r
times, are estimated under a maximum likelihood
criterion whereas events occurring less than r times,
N(wi /q)<r, are discounted a certain mass of probability.
Thus:
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In Turing discounting the discounted mass of
probability depends on n1, n2, ...,nr +1 , (being ni  the
number of events which occur i times). The lower the
count N(w/q) is, the bigger discounting is applied,
because higher counts are supposed to be better
estimated. This approach puts some constrains to the
relative values of n1, n2, ...,nr +1 , which are not always
satisfied by k-grams models with medium and high
values of k, due to the lack of an adequate distribution
of the samples.

To avoid the Katz discounting problems, we proposed
the Delimited discounting. As in the Katz model, the
discounting operation was limited to low counts, i.e.,
N w q r( / ) ≤  in the following way:

1 1− = − − < ∧ <<<λ τ τ τd r N w q d d( ( / )) ,  (4)

Discounting depends on d and τ  parameters’ values,
which must be minor than one. The bigger the count
was (N(w/q)≤r) the lower discounting was applied.
When N(w/q)=r, the discounting was the minimum
(only depends on d parameter), and when N(w/q)=1,
the discounting applied was the maximum (d-t(r-1)).

Another problem to be addressed when using Katz’
discounting is that additional checks are required for
those states for which all the events are seen more then
r times. The remedy used in the CMU toolkit [10] to
solve this problem is to increase the count at eat state
N(q) by one using the gained probability mass
1/(N(q)+1) to be redistributed over unseen events.
However, the discount is applied to all the seen events’
probabilities, which does not agree with Katz´s
discounting philosophy. In our proposal, only the
minimum counts were decremented (discounting only
depends on d parameter)  in the following way:
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As a consequence, events occurring a high number of
times are estimated under a maximum likelihood
criterion as in Katz proposal [11].

4. - EXPERIMENTAL EVALUATION OF
PRUNED K-TSS LM.

The Delimited discounting was evaluated over a set of

k-TSS language models integrated in a CSR system
[17]. This evaluation was carried out in terns of both,
the test set perplexity and the Word Error Rates
(%WER) obtained by the CSR system.

The syntactical model integrating K k-TSS models
(with k=1, 2..,K) can be easily handled at decoding
time [7]. However, the size of the model and thus the
memory required to allocate the full smoothed SFSA
still remains high, mainly for medium-large vocabulary
speech recognition tasks. So that, a pruning procedure
was applied to k-TSS models in order to reduce the
size of the model while keeping its accuracy. The
pruning procedure consisted in eliminating states with a
probability under a certain threshold. Thus, infrequent
k-grams wi k

i

−
−1 , k = 1...K-1 were removed from the model.

However, the pruning thresholds should be
experimentally evaluated since the goal of any pruning
procedure is to find a correct balance between the
memory requirements of the model and its performance.

For these experiments a task-oriented Spanish speech
corpus [18], consisting in 82,000 words and a
vocabulary of 1,208 words, was used. This corpus
represents a set of queries to a Spanish geography
database. The training corpus used to obtain the k-TSS
models, consisted in 9150 sentences. The text test set
consisted in 200 different sentences. These sentences
were then uttered by 12 speakers resulting in a total of
600 sentences that composed the speech test set.
Uttered sentences were decoded by the time-
synchronous Viterbi algorithm with a fixed beam-search
to reduce the computational cost. A chain of Hidden
Markov models representing the acoustic model of the
word phonetic chain replaced each transition of the k-
TSS automaton.

First, Table 1 shows the memory requirements for
several k-TSS models (k=2,...,5) when different pruning
factors (pf) were considered. Pruning factors (pf)
represent the count threshold bellow which k-grams
were discarded, so that, pf=1 represents the no pruned
models. Table 1 shows an important reduction of the

Table 1: Number of states (LMst) and memory requirements
when several pruned k-TSS language models (k=2,..,5) when
different pruning factors (pf) were considered.

k pf LMst memory (Mb)
2 1 1,213 0.13
3 1 7,479 0.43

2 3,854 0.20
3 2,845 0.14
4 2,336 0.11
5 1,999 0.09

4 1 21,551 0.95
2 9,360 0.38
3 6,366 0.25
4 4,993 0.19
5 4,139 0.16

5 1 42,849 1.69
2 16,086 0.58
3 10,260 0.36
4 7,795 0.26
5 6,308 0.22



number of states (LMst) of the k-TSS language models
when higher pf were applied. These reductions were
even more important for higher values of k.

In a first series of experiments, the proposed Delimited
(Dd) discounting was applied to several no pruned
smoothed k-TSS language models, with k=2,...,6.
Different values of d parameter in Equation 4 were
tested while keeping fixed values for parameter τ
(τ=0.01). The minimum number of times r required for
a maximum likelihood estimation of event probabilities
(Equation 3) was also set to r≈7.

Figure 3 shows the obtained Perplexity (PP) results
when not pruned models were evaluated. The more
mass of probability (<<d) was assigned to the unseen
events by the Delimited discounting procedure (up to a
maximum d=0.70), the better (lower) value of
perplexity was observed. Thus, the best perplexity
results were obtained when the higher mass of
probability was reserved to be applied to unseen
events, even if the differences around the optimum
were not very meaningful.

7

8

9

10

11

12

13

14

2 3 4 5 6

P
P

K

d=0.99

d=0.90

d=0.80

d=0.70

d=0.60

Figure 3. -  PP  obtained by several no pruned smoothed k-
TSS LM after applying Delimited discounting with several
values of d parameter in Equation 4.

Two different d parameter values were chosen to
evaluate pruned models: those which got a “good” LM
(low PP), i.e., d=0.70  and a “bad” LM  (high PP), i.e.,
d=0.99. Figure 4 shows the experimental evaluation in
terms of perplexity for those pruned k-TSS language
models presented in Table 1, using Delimited
discounting d=0.70 and d=0.90 respectively.

Figure 4 shows that: when d=0.70 the values of the
perplexity were almost constant for values of k higher
than 3 and that behavior was not depending on pf.
Perplexity values went up when pf was higher but they
were always under a fixed value (around 15). On the
contrary, when d=0.99 the perplexity reached very high
values with pf, especially when higher values of k were
considered.

Figure 5 shows the %WER obtained by the same
pruned and not pruned smoothed LM in Figure 4, when
they were integrated in the CSR system. When d=0.70
the obtained %WER were also almost constant for
values of k higher than 3. However, the most surprising
results reported in Figure5 is that the %WER
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Figure 4. -  PP obtained by the pruned k-TSS LMs of Table 1
using Delimited (Dd) discounting methods, d=0.70 and
d=0.99 respectively.
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Figure 5. -  %WER obtained by the pruned k-TSS LMs of
Table 1  (d=0.70 and d=0.99).

significantly decreased (from 35.5% with not pruned
models to 33% with pruned models) when pf increased
(up to pf=4). Values of pf higher than 4 led to
excessive model degradation and, as a consequence, to
a lower system performance.

When d=0.99, the best %WER results were obtained
with not pruned models (pf=1) (from 23% with not
pruned models to 28% with pruned models).  But, even



then, lower smoothed models (d=0.99) achieved better
performances, even if they are pruned, that higher
smoothed models (d=0.70).

In all cases, pruned models require less memory to be
allocated that not pruned models (see Table 1).
Moreover, they also need less time to decode each
sentence since the average active nodes per frame also
decrease with pf (see Figure 6).
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Figure 6. - Average active nodes obtained by the pruned k-
TSS LMs in Figures 4 and 5  (d=0.70 and d=0.99).

This behavior can be explained by analyzing the
smoothing technique. When pruning factors were
applied many infrequent k-grams disappeared from the
model and, as a consequence, the number of seen
events at each state decrease. In this case, those
infrequent k-grams were decoded as unseen events
when appearing in the test set. Therefore, the
distribution of the probability mass between observed
and unobserved events made by the syntactic
smoothing technique has been seriously modified. The
probability mass assigned to the back-off transition, i.e.
unseen events, is then smaller for pruned models. So
that, the gap between high and low probabilities in
pruned models is bigger than in no pruned models.
Consequently, the beam search technique needs to
keep a lower number of active nodes in the lattice.

To summarize the obtained results it could be said that
the syntactic back-off smoothing technique with d=0.70
seems to overestimate the unseen events' probability in
these experiments since the smoothed pruned models
got better recognition rates with less number of active
nodes per frame and lower smoothed models (d=0.99)
got better performances.

However, the test set perplexity did not report this

behavior. As it was previously reported in [12] [9], an
increase of the LM perplexity does not always means
degradation in the system performance. Figures 4 and 6
show that when high smoothed models (d=0.70) were
evaluated, perplexity increased when pf did, but
%WER decreased.  Besides, when a lower smoothed
model was evaluated (d=0.99) better %WER were
obtained in spite of the bad perplexity results.

4.1. - SCALLING PROBABILITIES: EFFECT
OF THE BALANCE PARAMETER Α.

A new experimental evaluation of pruned models was
then carry out over the same Spanish corpus and CSR
system. The Bayes’s rule was then applied but raising
the language model probability to a power α : (P(W))α

[13]. Several values of the balance parameter α  were
tested to optimize the percentage of words correctly
decoded  by the system.

Figure 7 shows the experimental evaluation for k=3 and
Figure 8 for k=4 when different pruning factors (pf) and
balance parameter values (α ) were considered.  Points
at the bottom left corner of each plot show the best
system performances: the lowest %WER values and
the lowest values of the average active nodes in the
lattice.

Figure 7 and Figure 8 show that there were not
significative differences among the obtained results
with different values of k. For any k-TSS model, an
important increase in recognition rates along with a
notable decrease in the average number of active nodes
in the lattice can be observed when the balance
parameter α increased (up to a maximum).

The effect of the balance factor α is the attenuation of
all the LM probabilities, but this attenuation is higher
for lower probability values. So that, the gap between
high and low probabilities is also bigger and thus the
beam search technique needs to keep a low number of
active nodes in the lattice (see Figure 7 and 8).
Therefore, the use of α values greater than one lead to
lower %WER and average numbers of active nodes in
the lattice.

However a different behavior of pruned and not pruned
models was observed:

a) The value of α optimising the %WER was
slightly higher for not pruned k-TSS models (α  around
5 when d=0.70 and around 4 when d=0.99) than for
pruned k-TSS models (a around 4 when d=0.70 and
around 3 when d=0.99).

b) Pruned models got better performances than
not pruned models when a high smoothed model was
used and the balance parameter values remains under
4. A particular case, α=1, of this surprising behavior
was shown in the experiments previously reported.



5

10

15

20

25

30

35

40

50 100 1000 5000

%
W

E
R

Average active nodes

pf=1

pf=2

pf=3

pf=4

=3

α=1

α=7
α=2

α=3

α=4α=5
α=6

α=7
α=2

α=3α=4
α=6

α=5

 d=0.70

5

10

15

20

25

30

35

40

50 100 1000 2000

%
W

E
R

Average active nodes

pf=1

pf=2

pf=3

pf=4

k=3 α=1

α=2
α=3α=4

α=5

α=6

α=7

α=7

α=6

α=5

α=4
α=3

α=2

d=0.99

Figure 7. - %WER obtained by the pruned 3-TSS LMs in
Figures 4 and 5 using different values of the  α parameter

(d=0.70 and d=0.99).
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Figure 8. - %WER obtained by the pruned 4-TSS LMs in
Figures 4 and 5 using different values of the  α parameter

(d=0.70 and d=0.99).

However, for high values of a, high values of the
pruning factor produced worse %WER. For low
smoothed models (d=0.99) pruned models got worse
results for any α value.

The use of a balance factor α can be understood as a
new smoothing of the LM probabilities. This effect is

not exactly the same but it is very similar to the one
produced by the syntactic back-off smoothing over
pruned models previously observed. Both procedures,
pruning k-TSS models and scaling the LM
probabilities, produced similar effects: decreasing both
the %WER (with high smoothed models) and the
average number of active nodes in the lattice. This
could explain why pruned models reach their best
performance with a lower value of α : applying the
syntactic smoothing technique after pruning the model
is similar to apply α value of α>1 in the recognition
scheme.

At the end of each word at the Viterbi trellis there is an
accumulated probability. The gap between these
accumulated probabilities is usually bigger than the
gap between the LM probabilities due to the acoustic
probabilities (whose values are smaller and are applied
much more times in the Viterbi trellis). The immediate
consequence is that the values of LM probabilities are
irrelevant in most part of the situations to decide the
best way to follow. However, when the LM
probabilities are raised to a power α : (P(w))α , all of
them are attenuated, but this attenuation is higher for
lower probability values. So that, the gap between the
high and low probabilities is also bigger and then the
LM probabilities are more and more competitive with
the increase of a values, up to a maximum where LM
probabilities are overvalued.

The smoothing technique reserves a different mass of
probability to be assigned to unseen events depending
on the d valued. When this mass of probability is higher
(d=0.70), the probability assigned to seen events is
lower (flat probability distribution). In such a case, a
bigger value of the parameter α  was needed to get the
best performance (see Figure 7 and Figure 8).

Figures 7 and 8 show a behavior of %WER completely
different to the one observed in Figure 6, when a value
of α=1 was used. Now k-TSS language models with
lower perplexity values lead to better %WER when
integrated in a CSR system. This fact could simply
means that the test set perplexity is not the most
adequate measure to predict the behavior of a
smoothing technique when the LM has to be integrated
in a CSR system since the final performance
fundamentally depend on empirical factors as α .

5. -CONCLUDING REMARKS.

A syntactic approach based on regular grammars, the k-
Testable Language Models in the Strict Sense (k-TSS),
has been used in this work to be integrated in a CSR
System. In this work, a new syntactic backing off
smoothing approach, the Delimited discounting, was
applied to also consider events not represented in the
training corpus. Delimited discounting deals with the
Turing discounting problems while keeping the Katz’
smoothing schema.



An experimental evaluation of pruned and not pruned k-
TSS models was carried out over a Spanish speech
corpus. In these experiments, important reductions of
the number of states were observed for pruned k-TSS
models (pf>1). Moreover, high smoothed pruned
models achieved better performance (better percentage
of words correctly decoded and less time to decode a
sentence) that not pruned models. Besides, low
smoothed pruned and no pruned models got better
performances that high smoothed models.

Then, several scaling factors where applied to the
estimated LM probabilities. Important increases of
recognition rates along with a notable decrease of the
average number of active nodes in the lattice were
observed in this case. However a different behavior of
pruned and not pruned models was observed: pruned
models got better performances in terms of average
active nodes and %WER than not pruned models when
low values of the balance parameter α  were used.
Thus, the use of a balance factor α  can be understood
as a new smoothing of the LM probabilities.

The experiments carried out in this work also show that
an increase of the test set perplexity of a language
model does not always means degradation in the model
performance. The test set perplexity seems not to be an
adequate measure to predict the behavior of a
smoothing technique when the LM has to be integrated
in a CSR system since the final performance
fundamentally depend on empirical factors as α .
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