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Abstract
A syntactic approach based on regular grammars, the k-Testable in the Strict Sense (k-
TSS) language models (LM), has been proposed in previous works to be integrated in
Continuous Speech Recognition (CSR) Systems. In this work, a pruning procedure was
applied to k-TSS models in order to reduce the size of the model while keeping its
accuracy. An experimental evaluation of the pruned k-TSS models was carried out over a
Spanish speech corpus in terms of both, perplexity and word recognition rates. Several
pruning thresholds as well as several values of the well-known empirical scaling factor
applied to the estimated LM probabilities were tested. These experiments showed that
pruned models achieved a good system performance. They also showed that an increase of
the test set perplexity of a language model does not always mean a degradation in the
model performance when integrated in a CSR system.
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1.- Introduction.

Continuous Speech Recognition (CSR) Systems require a Language Model (LM) to integrate
the syntactic and/or semantic constraints of the language. The generation of LM is a classical
pattern recognition problem where both statistical (typically N-grams) and syntactic
approaches have been extensively used. A syntactic approach based on regular grammars, the
k-Testable in the Strict Sense (k-TSS) LMs [1] has also been proposed in previous works [2]
[3] to generate LM. The use of regular grammars allowed to obtain a deterministic Stochastic
Finite State Automaton (SFSA) integrating K k-TSS models (with k=1, 2..,K) into a self
contained model. Such an Automaton can be efficiently represented and handled allowing its
integration in a CSR system, even for high values of K [2] [3].
A major problem to be solved when using a Language Model is the estimation of the
probabilities of events not represented in the training corpus. In previous works [4] a syntactic
back-off smoothing technique was also proposed under the k-TSS formalism. The probability
to be assigned to unseen events is recursively obtained from less accurate models (k-1, k-
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2,…1) in back-off smoothing. Then, the integration of different k-TSS models needed by this
smoothing technique can be achieved in a compact and easy way [5]. The obtained smoothed
SFSA integrating the K k-TSS models (with k=1, 2..,K) can be easily handled at decoding time
by a simple search function trough the array allocating the model [5]. Additionally, beam
search strategies can also be used to reduce the time required to decode each uttered sentence.
However, the size of the model and thus the memory required to allocate the full smoothed
SFSA still remains high, mainly for medium-large vocabulary speech recognition tasks.
In this work, a pruning procedure was applied to k-TSS models in order to reduce the size of
the model and memory requirements, while keeping its accuracy. The pruning procedure
consisted in removing infrequent k-grams from the model. However, the pruning thresholds
should be experimentally evaluated since the goal of any pruning procedure is to find a correct
balance between the memory requirements of the model and its performance.
The aim of this work was to evaluate several pruned k-TSS language models. The most
common way to evaluate a Language Model is the test set perplexity. However, this measure
does not take into account of the relationship to the acoustic models. New measures have been
proposed to avoid this problem [6] [7]. Nevertheless the must reliable way to compare the
performance of different Language Models that have to be integrated into a CSR system is to
measure the obtained recognition rates. In this work, both measures were considered: the test
set perplexity and the percentage of words correctly decoded.
CSR systems are invariably based on the well-known Bayes’ rule. Bayes’ rule maximises the
product of the probability of a sequence of acoustic observations A for a given sequence of
words Ω, P(A/Ω), and the probability P(Ω) that the word sequence Ω will be uttered. However,
it is well known that empirical scaling factors need to be applied to P(A/Ω) or to P(Ω) in the
Bayes’ rule to obtain good word recognition rates in practical CSR systems [8] [9]. P(A/Ω)
and P(Ω) are estimated distributions selected independently from speech and text sample sets
respectively. Thus, a balance parameter has to be applied to lessen these effects and then
obtain good system performances.
An experimental evaluation of the pruned k-TSS models was carried out over a Spanish
speech corpus. Several pruning thresholds as well as several values of the balance parameter
α applied to the estimated LM probabilities (P(Ω))α were tested. These experiments showed
that pruned models achieved a good system performance. These experiments also showed that
an increase of the test set perplexity of a language model does not always mean a degradation
in the model performance when integrated in a CSR system.
In Section 2, we resume the k-TSS language models used along the work as well as the
syntactic back-off smoothing technique. Section 3 deals with the experimental evaluation of
several Pruned k-TSS Language Models in terms of both, perplexity and recognition rates.
Section 4 shows the effect of the balance parameter α  when scaling Language Model
probabilities. Finally, some concluding remarks are presented in Section 5.

2.- The Language Model.

2.1.- The Stochastic Finite State Automaton (SFSA).

A syntactic approach of the well-known N-grams models, the k-Testable Language in the
Strict Sense (k-TSS) [1] [2] [3], was used in this work to be integrated in a CSR system. The
use of k-TSS regular grammars allowed to obtain a deterministic Stochastic Finite State



Automaton (SFSA) integrating K k-TSS models (with k=1, 2..K) into a self-contained model
[2] [3]. In such a model, each state of the automaton represents a string of words wi-kwi-(k-1)...wi-

1, k = 1...K-1, with a maximum length of K-1, where i stands for a generic index in any string
w1...wi... appearing in the training corpus. Such a state is labelled as wi− k

i−1 . Each transition
represents a k-gram, k = 1...K; it is labelled by its last word wi and connects two states labelled
up to with K-1 words. As an example, transitions corresponding to strings of words of length
K connecting states associated to string lengths K-1 are defined as:

δ K wi−(K −1)
i−1 ,wi( ) = wi−( K−1)+1

i ,P(wi / wi− ( K−1)
i−1 )( ) (1)

The probability to be associated to each transition δ K wi−(K −1 )
i−1 ,wi( ) can be estimated under a

maximum likelihood criterion as:
PML (wi / wi−( K−1)

i−1 ) =
N (wi / wi−(K −1 )

i−1 )
N(wj /wi−( K− 1)

i−1 )
∀w j∈∑
∑

(2)

where Σ is the vocabulary, that is, the set of words appearing in the training corpus,
N(wj /wi−(K− 1)

i−1 )  is the number of times the word wj appears at the end of the K-gram wi-(K-1)...wi-

1wj, that is the count associated to the transition labelled by wj coming from state labelled as
wi−( K−1)

i−1 .
The whole and detailed definition of the Automaton, i.e. initial and final states, unigram
representation, etc., can be found in [2] and [5]. As an example, Figure 1a) represents the K-
grams wi−( K−1)

i−1  and wi−(K −1)+1
i  labelling two states of the automaton. When wi is observed an

outgoing transition from the first to the second state is set and labelled by wi.

2.2.- The Smoothing technique

Smoothing techniques are usually based on a discounting and distribution scheme of the LM
estimated probabilities. A probability mass of the observed events is discounted and then
assigned to unobserved events. A syntactic back-off smoothing procedure was developed
under the k-TSS formalism, in previous works [4]. The syntactic approach suggested a state-
dependent estimation of the total discount and, consequently, the symmetry principle was only
locally applied [4]. Thus, the modified probability P(wi/q) to be associated to a transition
δ K q,wi( ) = ′ q ,P(wi / q)( ) representing an observed event at state q is estimated according to:

P(wi / q) = PML (wi / q)d(q) (3)
The discount coefficient d(q) was calculated  as:

d (q) =
N(q)

N(q) + Σ q

(4)

where Σq is the vocabulary associated to state q ∈ QK and consists of the set of words
appearing after the string labelling state q  in the training corpus, |Σq| is the size of Σq, N(w/q)
is the number of times that word w  appears after the string labelling state q  and
N(q) = N(w / q)

∀w∈∑q

∑ .



Figure 1: a) Two states of the SFSA representing two K-grams. Transitions are labelled by words appearing
in the training sample after the K-gram labelling the source state. b) Transitions labelled by seen events(wj

∈ Σq) connect each state to states in the same k-TSS submodel. Transition labelled by unseen events (U)
connect it to its back-off state in the (k-1)-TSS submodel

Therefore, the discount coefficient d(q) depends on the number of different seen events, |Σq|,
appearing after the string labelling state q and on N(q). This approach is similar to the Witten-
Bell discounting scheme used by the CMU Statistical Language Modelling toolkit [10].
The transitions probabilities corresponding to those events not represented in the training
corpus, i.e. unseen events, are estimated according to more general probability distributions in
k-TSS models, with k<K. These transitions can be grouped into a unique transition to a back-
off state bq associated to each state q. This back-off state bq associated to each state q can be
found in the (k-1)-TS submodel. A complete presentation of the syntactic back off scheme can
be found in [4]. Figure 1b shows such a structure for a state q labelled as wi−( K−1)

i−1 .

3.- Pruning the k-TSS Language Models.

A pruning procedure was applied to k-TSS models in order to reduce the size of the model
while keeping its accuracy. The pruning procedure consisted in eliminating states with a
probability under a certain threshold. Thus, infrequent k-grams wi− k

i−1 , k = 1...K-1 were removed
from the model. However, the pruning thresholds should be experimentally evaluated since the
goal of any pruning procedure is to find a correct balance between the memory requirements
of the model and its performance.
An experimental evaluation of the pruned k-TSS models was carried out over a Spanish
speech corpus. The model degradation was first evaluated in terms of a test set perplexity
(PP). Then the smoothed SFSA was integrated in a CSR system. Each transition of the
automaton was replaced by a chain of Discrete Hidden Markov models, with four observation
codebooks, representing the acoustic model of each phonetic unit of the word. The time-
synchronous Viterbi algorithm, along with a beam-search procedure reducing the involved
computational cost, was used to decode uttered sentences. The beam-search factor (bf) was
optimised in previous experiments [2]. Thus, the same fixed value, bf=0.7, was used for all the
experiments in this work. The experiments were carried out by a Silicon Graphics O2 with a
R10000 processor. This CSR system was then used to evaluate the pruned k-TSS models
over the same test set in terms of recognition performance, i.e. percentage of words correctly
decoded (%W). This value was calculated as: %W=c/(i+s+d+c)*100 where c accounts for
the number of words correctly decoded, s and d for the number of substitution and deletion
errors respectively and i for the number of inserted words. Finally, both evaluation measures,
perplexity and recognition performance, were compared.
For those experiments, a task-oriented Spanish speech corpus [11], consisting in 82,000
words and a vocabulary of 1,213 words, was used. This corpus represents a set of queries to a
Spanish geography database. The training corpus used to obtain the k-TSS models, consisted



in 9150 sentences. The text test set consisted in 200 different sentences. These sentences were
then uttered by 12 speakers resulting in a total of 600 sentences and 5655 words that
composed the speech test set.
Table 1 shows the experimental evaluation of several k-TSS models (k=2,...,6) when different
pruning factors (pf) were considered. Pruning factors (pf) represent the count threshold
bellow which k-grams were discarded, so that, pf=1 represents the no pruned models. Table 1
also shows the number of states (LMst) of the k-TSS language models, and the size of
memory required to allocate them. The average number of active nodes per frame (NPF) in the
lattice (consisting of acoustic and LM states) and the average time per frame (TPF) needed to
decode the sentences are also represented in Table 1.
Table 1: Evaluation of pruned k-TSS language models (k=2,..,6) when different pruning factors (pf) were
considered. Both, perplexity and percentage of correctly decoded words are represented.

K pf LMst memory (Mb) PP NPF TPF(msec) %W
2 1 1,213 0.13 13.10 3,397 69 58.38
3 1 7,479 0.43 7.53 4,270 91 61.15

2 3,854 0.20 8.51 2,755 59 63.56
3 2,845 0.14 9.76 2,286 43 64.54
4 2,336 0.11 11.03 1,960 35 65.17
5 1,999 0.09 12.14 1,753 30 65.05

4 1 21,551 0.95 6.95 4,392 96 61.50
2 9,360 0.38 8.07 2,809 60 63.81
3 6,366 0.25 9.62 2,325 46 64.78
4 4,993 0.19 10.08 1,988 36 65.25
5 4,139 0.16 12.41 1,776 31 64.76

5 1 42,849 1.69 6.90 4,411 98 61.37
2 16,086 0.58 8.10 2,818 60 63.74
3 10,260 0.36 9.80 2,332 46 64.82
4 7,795 0.26 11.28 1,994 36 64.83
5 6,308 0.22 12.63 1,781 32 64.66

6 1 69,616 2.55 6.90 4,418 99 61.23
2 22,839 0.77 8.18 2,822 61 63.75
3 13,784 0.45 9.91 2,333 46 64.81
4 10,179 0.33 11.47 1,996 37 64.93
5 8,089 0.26 12.78 1,783 32 64.68

In order to show the statistical significance of the differences among the %W reported in
Table 1, a summary of the best results along with their confidence intervals [W -,W +]95% is
shown in Table 2. The confidence interval  [W -,W +]95% was calculated as:

W ± =
p +

z2

2N
± z

p(1 − p)
N

+
z2

4N2

1 + z
2

N

*100

where p=%W/100, z=1.96 and N is the number of words in the test set (5655 in these
experiments).

Table 2: Summary of the best %W results of Table 1, along with the confidence interval [W -,W +]95% values
were included to measure the statistical significance of the obtained results.

K pf W [W -,W +]95%
2 1 58.38 [57.08, 59.65]
3 1 61.15 [59.87, 62.41]

4 65.17 [63.93, 66,40]
4 1 61.50 [60.22, 62.76]

4 65.25 [63.99, 66.47]
5 1 61.37 [60.09, 62.63]

4 64.83 [63.57, 66,06]
6 1 61.23 [59.95, 62.49]

4 64.93 [63.71, 66,16]

Important reductions of the number of states and memory requirements were observed when
the pruned k-TSS models (pf>1) were considered (Table 1). These reductions were even more
important for higher values of k. On the other hand, the test set perplexity (PP) increased
when pf did showing the normal degradation of the pruned models' structure.



Figure 2 represents the perplexity (PP) and the obtained %W for the k-TSS models and
pruning factors evaluated in these experiments (Table 1). Figure 3 shows the %W and the
average number of actives nodes (NPF) in the lattice for the same experiments (Table 1).
Figure 2 shows that the values of the perplexity are almost constant for values of k higher than
3. This behaviour is managed thanks to the use of the back-off smoothing procedure [4].
However, the most surprising results reported in Table 1, Figure 2 and Figure 3 is that the
%W significantly increased when pf did. Thus, pruned models achieved better performance
and require less memory to be allocated that not pruned models!. Moreover, they also need
less time to decode each sentence since the average active nodes per frame also decrease with
pf (see Figure 3).
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Figure 2: Perplexity (PP) and percentage of words correctly decoded (%W) obtained by the pruned k-TSS
language models (k=2 to 6) evaluated in the experiments reported in Table 1, when different pruning factors (pf
= 1 to 5) were considered.
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Figure 3.- Percentage of words correctly decoded for %W and average number of active nodes per frame
(NPF) obtained for the pruned k-TSS language models evaluated (k=2 to 6) evaluated in the experiments
reported in Table 1, when different pruning factors were considered.

This peculiar behaviour can be explained by analysing the smoothing technique presented in
Section 2.2. When pruning factors were applied many infrequent k-grams disappeared from
the model and, as a consequence, the number of seen events at each state (|Σq|) could strongly
decrease. In this case, those infrequent k-grams were decoded as unseen events when
appearing in the test set. An important reduction of the |Σq| value was then achieved. The value
of N(q) also decreased but this reduction was not so significant. Therefore, the distribution of
the probability mass between observed and unobserved events made by the syntactic
smoothing technique has been seriously modified. The discount coefficient d(q) is smaller
(see Equation 4) for pruned models than for not pruned ones and thus, the probability mass
assigned to the backoff transition, i.e. unseen events, is then also smaller. So that, the gap



between high and low probabilities in pruned models is bigger than in no pruned models.
Consequently, the beam search technique needs to keep a lower number of active nodes in the
lattice (the average number of active nodes (NPF) decreased when pf increased as shown in
Figure 3). The syntactic backoff smoothing technique seems to overestimate the unseen
events' probability in these experiments since the smoothed pruned models got better
recognition rates with less number of active nodes per frame.
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Figure 4: Evolution of the percentage of words correctly decoded (%W) and the perplexity values with the
pruning factor (pf), for k=3, 4 and 5 k-TSS models

However, the test set perplexity did not report this behaviour. Figure 4 represents the
perplexity and the recognition rates obtained for some pruned k-TSS language models
evaluated in these experiments (Table 1). As it was previously reported in [5] [6], an increase
of the LM perplexity does not always means a degradation in the system performance. Figure
4 shows that perplexity and recognition rates increased when pf did. The minimum values of
both, %W and PP values were reached by the not pruned (pf=1) model. The perplexity is
practically linear with the pruned factor. However, the %W reached its maximum value for pf=
3 or 4. Values of pf  higher than 4 led to an excessive model degradation and, as a
consequence, to a lower system performance.

4.- Scaling probabilities: effect of the balance parameter α.

A new experimental evaluation of pruned models was then carry out over the same Spanish
corpus and CSR system. The Bayes’s rule was then applied but raising the language model
probability to a power α: (P(Ω))α. Several values of the balance parameter α were tested to
optimise the percentage of words correctly decoded  by the system.
Figure 5 shows the experimental evaluation of several k-TSS models (k=3,...,6) when different
pruning factors (pf) and balance parameter values (α) were considered. The continuous line
represents the not pruned (pf=1) model whereas dotted lines represent different pruned
models (pf>1). Points at the top left corner of each Figure show the best system
performances: the highest %W values and the lowest values of the average number of active
nodes.
For any k-TSS model, an important increase in recognition rates along with a notable decrease
in the average number of active nodes in the lattice can be observed (Figure 5) when the
balance parameter α increased (up to a maximum). Thus, higher values of α reduced the word
insertion rate and, consequently, the word error rate. The effect of the balance factor α is the
attenuation of all the LM probabilities, but this attenuation is higher for lower probability
values. So that, the gap between high and low probabilities is also bigger and thus the beam
search technique needs to keep a low number of active nodes in the lattice (see Figure 5).
Therefore, the use of α values greater than one lead to higher recognition rates for lower
average numbers of active nodes in the lattice.
However a different behaviour of pruned and not pruned models was observed:



a) The value of α optimising the %W was slightly higher for not pruned k-TSS models
(6 for k=4, 5 and 6) than for pruned k-TSS models (4 or 5).

b) Pruned models got better performances than not pruned models when the balance
parameter values remains under 5. A particular case, α=1, of this surprising behaviour was
shown in the experiments reported in previous Section (Table 1 and Figure 2). However, for
high values of α, high values of the pruning factor produced worse %W. Table 3 shows the
experimental evaluation of several pruned k-TSS models for a fixed scaling factor, α=5,
leading to a good system performance. In this case, not pruned models got the best %W as is
usually expected.
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Figure 5. Evaluation of k-TSS models for different pruning factors (pf) and scaling parameter α.

Table 3: Evaluation of pruned k-TSS language models (k=2,..,6) for α=5 (good system performance).
K pf NPF TPF (msec) %W
3 1 328 16 89.18

2 245 10 87.93
3 214 8 86.62
4 197 7 85.25
5 183 6 84.23

4 1 328 16 89.76
2 242 10 88.76
3 210 8 86.92
4 194 7 85.55
5 180 6 85.72

5 1 332 17 89.94
2 242 10 88.52
3 211 8 86.88
4 194 7 85.19
5 181 6 84.24

6 1 335 18 89.77
2 243 10 88.42
3 211 8 86.79
4 195 7 85.02
5 182 6 84.01

The use of a balance factor α can be understood as a new smoothing of the LM probabilities.
This effect is not exactly the same but it is very similar to the one produced by the syntactic



back-off smoothing over pruned models observed in previous Section. Both procedures,
pruning k-TSS models and scaling the LM probabilities, produced similar effects: increasing
the %W while decreasing the average number of active nodes in the lattice. This could explain
why pruned models reach their best performance with a lower value of α: applying the
syntactic smoothing technique after pruning the model is similar to apply a value of α>1 in
the recognition scheme.
Figure 6 represents the perplexity and the recognition rates obtained for some pruned k-TSS
language models evaluated in these experiments when a balance parameter α=5 was applied
(Table 3). This Figure shows that an increase in perplexity (obtained with pruned models
pf>1) means a decrease in recognition rates when an appropriate factor α was applied. This
Figure shows a behaviour of the perplexity and %W completely different to the one observed
in Figure 4, when a value of α=1 was used. Now k-TSS language models with lower
perplexity values lead to better %W when integrated in a CSR system. This fact could simply
means that the test set perplexity is not the most adequate measure to predict the behaviour of
a smoothing technique when the LM has to be integrated in a CSR system since the final
performance fundamentally depend on empirical factors as α.
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Figure 6: Evolution of the percentage of words correctly decoded (%W) and the perplexity values with the
pruning factor (pf), for k=3, 4 and 5 k-TSS models (α=5).

5.- Concluding Remarks.

A syntactic approach based on regular grammars, the k-Testable Language Models in the
Strict Sense (k-TSS), has been used in this work to be integrated in a CSR System. A pruning
procedure was then applied to the k-TSS models in order to reduce the size of the model while
keeping its accuracy.
An experimental evaluation of the pruned k-TSS models was carried out over a Spanish
speech corpus. In these experiments, important reductions of the number of states were
observed for pruned k-TSS models (pf>1). Moreover, pruned models achieved better
percentage of words correctly decoded but require less memory to allocate them and less time
to decode a sentence that not pruned models. This behaviour is due to the state-dependent
back-off smoothing technique applied to pruned k-TSS models.
Then, several scaling factors where applied to the estimated LM probabilities. Important
increases of recognition rates along with a notable decrease of the average number of active
nodes in the lattice were observed in this case. However a different behaviour of pruned and
not pruned models was observed: pruned models got better performances in terms of average
active nodes and %W than not pruned models when low values of the balance parameter α
were used. Thus, the use of a balance factor α can be understood as a new smoothing of the
LM probabilities.
The experiments carried out in this work also show that an increase of the test set perplexity
of a language model does not always means a degradation in the model performance. The test



set perplexity seems not to be an adequate measure to predict the behaviour of a smoothing
technique when the LM has to be integrated in a CSR system.
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