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Abstract1

Continuous Speech Recognition (CSR) systems require
acoustic models to represent the characteristics of the
acoustic signal and Language Models (LM) to represent
the syntactic constraints of the language. Both acoustic
and LM probability distributions are usually independently
obtained and evaluated. Then, the respective “best” models
are selected to be integrated in the CSR systems. But, in
this paper it was proved that the use of more accurate
acoustic models (for example the use of semicontinuous
models instead of discrete ones or the use of a bigger
number of then representing a more complete set of sub-
lexical units) didn’t always mean a better performance of
the integrated system because the acoustic improvements
were softened when the LM probabilities were applied.
This experimental evaluation was carried out over a
Spanish speech application task.

1 . Introduction
The final goal of a Continuous Speech Recognition
(CSR) system is to obtain a sequence of linguistic units
W, given a sequence of acoustic observations A. Thus,
acoustic probabilities P(A/W) and Language Model (LM)
probabilities P(W) must be integrated using the well-
known Bayes´s formula. Acoustic and LM probability
distributions are usually independently obtained and
evaluated. Then, the respective “best” models (the set of
acoustic models which give a better performance in a
phonetic-acoustic decoder and the LM with a lower
perplexity value) are chosen to be integrated in the CSR
system.
In this work, the classical Hidden Markov Models (HMM)
were  evaluated. First, a basic set of context independent
sub-lexical units was considered and a Discrete HMM was
obtained for each unit. Then more accurate acoustic
models were evaluated:
a) semicontinuous instead of discrete ones
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b) a bigger number of then representing a more complete
set of context dependent  sub-lexical units.
The use of more accurate acoustic models usually gives a
better performance when a phonetic-acoustic decodification
is carried out but it doesn’t always mean a better
performance of the integrated system when the LM
probabilities are also applied. In fact, in this work we
showed that discrete HMM can outperform
semicontinuous HMM with significant faster decoding
speeds, which is also reported in other recent works [1].
Acoustic models were first evaluated over an acoustic
phonetic decoding task showing better performances when
more accurate models were considered. Then, the three sets
of acoustic HMM were integrated and evaluated in the
CSR system [2] over a task oriented speech corpus
representing a set of queries to a Spanish geography
database (1208 words).
The LM generation is usually based on statistical methods
(N-grams). In this work, the k-Testable in the Strict Sense
(k-TSS) LMs were used and evaluated with k=2..5. They
are a sub-class of the regular grammars and a syntactic
approach of the well-known N-grams [3].
It is well known that, to obtain the best performance of a
CSR system is needed the modification of one of both
P(W) or P(A/W) by introducing a balance parameter (α)
[4]. This parameter seems to lessen the effects derived
from the fact that, both P(A/W) and P(W) are
independently obtained from speech and text training sets
respectively. So that, several values of the balance
parameter applied to the smoothed LM probabilities were
also tested.
In Section 2, the acoustic-phonetic decoding evaluation of
the three proposed sets of acoustic models was presented.
Section 3, deals with the experimental evaluation of the
integrated CSR system taking into account the effect of
scaling the LM probabilities. Finally, some concluding
remarks are presented in Section 4.

2.- Acoustic-Phonetic decoding.
The basic sub-lexical unit set consisted of 24 phone-like
units. A Discrete left to right HMM with 3 looped states



and 4 discrete observations per state was obtained for each
unit. Emission and transition probabilities were estimated
using both the Baum-Welch and Viterbi procedures,
applying the Maximum Likelihood criterion.
But, to increase the accuracy of the acoustic models in the
CSR system, two different ways were considered:
a) The use of a semicontinuous HMM for each phone-like
unit instead of the discrete one. The joint optimization of
the codebook together with the parameters of the model is
one of the main advantages of this kind of models [5].
b) To increase the number of sub-lexical units keeping the
use of discrete HMM. The well known technique of
decision tree clustering [6] was applied to obtain an
optimal set of 101 trainable, discriminative and
generalized context dependent units. An additional set of
border units was specifically trained to generate lexical
baseforms, covering all possible intraword context and
being context independent  to the outside [7].
Acoustic models were first evaluated over an acoustic
phonetic decoding task with a balanced phonetic corpus
both for training and testing purposes. The training corpus
was composed of 1529 sentences, involving around 60000
phones. The -speaker independent- test corpus was
composed of 700 sentences and around 33500 phones.
In this experiments, the phone recognition rates (%REC)
was measured as %REC=c/(i+s+d+c)*100, where c
accounts for the number of correct recognitions, and i, s
and d were the number of insertions, substitutions and
deletions, respectively. Table 1 shows the obtained results
when discrete and semicontinuous HMM were evaluated
over the set of 24 phone-like units. Table 2 shows the
obtained results when the 24 context independent  and the
101 context dependent  sets of units were evaluated using
discrete HMM.

Table 1. Phone recognition rates for a Spanish
acoustic-phonetic decoding task, using discrete
and semicontinuos HMM (24 phone-like units
were represented)

Kind of model % REC
discrete 63.82

semicontinuous 65.07

As it was expected, the use of more accurate models gave
higher phone recognition rates. In fact, the use of a bigger
number of discrete HMM representing context dependent
sub-lexical units seems to be even more efficient than the
use of semicontinuous HMM over the 24 context
independent units.

Table 2. Phone recognition rates for a Spanish
acoustic-phonetic decoding task, using phone-
like units and context dependent units (discrete
HMM were used).

Type of unit # units % REC
phone-like units 24 63.82
context dependent 101 66.44

In phonetic acoustic decodification , it was obvious that
the use of more accurate models must be taking into
account. In next section we could see if this behavior is
kept when the evaluation is over the complete CSR
system.

3.- The CSR System
Previously evaluated acoustic models were integrated with
the k-TSS LM in the CSR system. In this section, first
the syntactic LM is presented  and then the experimental
evaluation carried out.

3.1- The syntactic Language Model.
A syntactic approach of the well-known N-grams models,
the k-Testable Language in the Strict Sense (k-TSS) has
been used in this work to be integrated in a CSR system.
The use of k-TSS regular grammars [8] allowed to obtain
a deterministic Stochastic Finite State Automaton (SFSA)
integrating K k-TSS models (with k=1, 2..K) into a self-
contained model [3]. In such a model, each state of the
automaton represents a string of words wi-kwi-(k-1)...wi-1, k
= 1...K-1, with a maximum length of K-1, where i stands
for a generic index in any string w1...wi... appearing in the
training corpus. Such a state is labeled as wi − k

i −1 . Each
transition represents a k-gram, k = 1...K; it is labeled by
its last word wi and connects two states labeled up to with
K-1 words. As an example, transitions corresponding to
strings of words of length K connecting states associated
to string lengths K-1 are defined as:

δ K wi−( K−1)
i−1 ,wi( ) = wi −( K −1) +1

i , P (w i / wi− ( K−1 )
i−1 )( ) (1)

The probability to be associated to each transition
δ K wi −(K −1)

i −1 , wi( )  can be estimated under a maximum
likelihood criterion as:

PML(wi / wi−( K−1)
i−1 ) =

N (w
i
/ w

i−( K−1)
i−1 )

N(wj / wi−( K−1)
i−1 )

∀wj ∈∑
∑ (2)

where Σ is the vocabulary, that is, the set of words
appearing in the training corpus, N(wj /wi −( K− 1)

i −1 )  is the



number of times the word wj appears at the end of the K-
gram wi-(K-1)...wi-1wj, that is the count associated to the
transition labeled by wj coming from state labeled as
wi −( K−1)

i −1 .
The whole and detailed definition of the Automaton, i.e.
initial and final states, unigram representation, etc., can be
found in [3]. As an example, Figure 1 represents the K-
grams wi−( K−1)

i−1
 and wi−(K −1)+1

i  labeling two states of the
automaton. When wi is observed an outgoing transition
from the first to the second state is set and labeled by wi.

        

K
w K

i

Figure 1: Two states of the K-TSS automaton labeled by K-
grams wi-(K-1)wi-(K-1)+1...w(i-1) and wi-(K-1)+1...wi labeling two
states of the automaton. Transitions are labeled by words
appearing in the training sample after K-grams labeling
the source state.

The probability associated to each transition representing
seen events can be estimated under a maximum likelihood
criterion (see Equation 2). However, a probability need
also to be associated to those events not represented in the
training corpus, i.e., unseen events. To deal with this
problem, some probability mass should be discounted
from observed events and then redistributed over unseen
ones using some smoothing procedure. In previous works
[9] Backing-off smoothing technique was chosen because
the involved recursive scheme has been well integrated in
the finite state formalism. Within the backing-off
formalism the Witten-Bell discounting was applied [10].
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Figure 2. - Perplexity values obtained by several k-TSS
LM after applying Witten-Bell discounting.

For the evaluation of the k-TSS LM, a task-oriented
Spanish corpus [11], consisting of 82.000 words and a
vocabulary of 1.208 words, was used. This corpus
represents a set of queries to a Spanish geography
database. The training corpus for the k-TSS language
models consisted of 9150 sentences. For testing purposes,

an independent but fully covered text containing 200
sentences was used. Figure 2 shows the obtained
perplexity values. The values of the perplexity are almost
constant for values of k higher than 3. This behavior is
managed thank to the use of the back-off smoothing
procedure.

3.2.- Experimental evaluation
The three sets of acoustic models were evaluated over a set
of k-TSS (k=2..5) language models integrated in a CSR
system [2].  This evaluation was carried out in terns of
Word Error Rates (%WER) which was also calculated as
%WER=(i+s+d)/(c+i+s+d) where c accounts for the
number of correct recognized words, and i, s and d were the
number of words inserted, substituted and deleted,
respectively.
Each transition of the k-TSS automaton was replaced by a
chain of Hidden Markov models, representing the acoustic
model of each phonetic unit of the word. The time-
synchronous Viterbi algorithm, along with a beam-search
procedure reducing the involved computational cost, was
used to decode uttered sentences. The beam-search factor
(bf) was optimized in previous experiments [3]. Thus, the
same fixed value, bf=0.7, was used for all the experiments
in this work. LM probabilities were modified by
introducing a balance parameter α [4] in the Bayes’s rule:
P(w)α in order to obtain the maximum performance of the
CSR system. The experiments were carried out by a
Silicon Graphics O2 with a R10000 processor.
For testing purposes, previously presented Spanish corpus
was used. The 200 sentences were uttered by 12 speakers
resulting in a total of 600 sentences and 5655 words.
Figure 3 showed the obtained results when discrete and
semicontinuous HMM were integrated with several
smoothed language models (k=2, 3, 4 and 5) and different
values of the balance parameter  around the optimum
(α=4, 5, 6 and 7) were considered . The average number of
active nodes in the trellis (acoustic  and LM states) needed
by every LM to decode a sentence is also represented.
Points at the bottom left corner of each plot represent the
best system performance: the lowest %WER and the
lowest average number of active nodes in the lattice. For
any k-TSS model, an important increase in recognition
rates (up to a maximum) along with a notable decrease in
the average active nodes in the lattice can be observed
(Figure 3) when the balance parameter α was increased.
When k=2 the use of semicontinuous models helped to
obtain a better system performance but with higher values
of k the differences around the optimum were not
significative.
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Figure 3. - %WER obtained by the Smoothed k-TSS LMs
using Discrete HMM (DHMM) and semicontinuos
(SCHMM) with different values of the α parameter.

Practically the same results can be found when discrete
HMM of contextual sub-lexical units were considered (see
Figure 4).
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Figure 4. - %WER obtained by the Smoothed k-TSS LMs
using discrete HMM of incontextual (24 units) and
contextual (101 units) with different values of the α
parameter.

The construction of linear models presented a problem
when between-words contexts had to be considered because
the outer context were not known. Two different
procedures were used to obtain lexical baseforms, both
considering words as isolated. In the first one, called TR1,
border units were selected to be context independent both
sides. In the second one, called TR2, border units were
selected to be context dependent in the word side and
context independent in the outside [7].

Figure 4 showed that the use of contextual units,
especially TR2, helped to the recognition with k=2 and
k=3, but there were not differences around the optimum
with higher values of k.

4.- Concluding remarks.
Acoustic and LM probabilities are usually independently
obtained and evaluated. Then, the respective best models
are chosen to be integrated in the CSR systems. But, in
this paper it was proved that the use of more accurate
acoustic models doesn’t always mean a better performance
of the integrated system because the acoustic
improvements usually are softened when the LM
probabilities are applied.
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