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Abstract

This paper presents a simple approach to phonotactic language
recognition which uses Lattices of Time-Synchronous Cross-
Decoder Phone Co-occurrences at the frame level. In previ-
ous works we have successfully applied cross-decoder infor-
mation, but using statistics of n-grams extracted from 1-best
phone strings. In this work, the method to build and properly
use lattices of cross-decoder phone co-occurrences is fully ex-
plained and developed. For evaluating the approach, a choice
of open software (Brno University of Technology phone de-
coders, HTK, SRILM, LIBLINEAR and FoCal) was used, and
experiments were carried out on the 2007 NIST LRE database.
The proposed approach outperformed the baseline phonotactic
systems both considering n-grams up to n=3 (yielding around
13% relative improvement) and up to n=4 (yielding around
7% relative improvement). In both cases, best results were
obtained by considering the m=400 most likely cross-decoder
coocurrences: 1.29% EER and Crrr = 0.203. The fu-
sion of the baseline system with the proposed approach yielded
1.22% EER and Cr,r,r = 0.203 (meaning 18% and 15% rela-
tive improvements, respectively) for n=3, and 1.17% EER and
Crrr = 0.197 (meaning 15% and 10% relative improvements,
respectively) for n=4, outperforming state-of-the-art phonotac-
tic systems on the same task.

Index Terms: Phonotactic Language Recognition, Sup-
port Vector Machines, Phone Lattices, Cross-Decoder Co-
occurrences

1. Introduction

Nowadays, the most common phonotactic approach for Spo-
ken Language Recognition (SLR) tasks uses counts of phone
n-grams to build a feature vector which feeds a classifier based
on Support Vector Machines (SVM) [1]. Typically, N phone
decoders are applied in parallel to the input utterance, yield-
ing N phone decodings. The output of the phone decoder
(¢ € [1, N]) is scored for each target language j (5 € [1, L]), by
applying the model A(%, j) (estimated using the outputs of the
phone decoder ¢ for a training database, taking j as the target
language). System performance can be improved with the use
of phone lattices instead of 1-best phone strings [2], since lat-
tices provide richer and more robust information.
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However, the above described structure defines /N independent
data processing channels, and no cross-decoder dependencies
are exploited for language modeling, information being fused
only at the score level. As far as we know, the idea of us-
ing phonetic information in the cross-stream (cross-decoder) di-
mension was first applied for speaker recognition in the Johns
Hopkins University (JHU) 2002 Workshop [3], where two de-
coupled time and cross-stream dimensions were modelled sepa-
rately and integrated at the score level. Some years later, cross-
stream dependencies were also used via multi-string alignments
in a language recognition application [4].

In previous works [5][6] we have presented two simple ap-
proaches to phonotactic language recognition which, starting
from 1-best phone strings, use statistics of cross-decoder phone
co-occurrences at the frame level. Let us consider a choice of
two decoders A and B. In the first approach, time-synchronous
cross-decoder phone co-occurrences are obtained by aligning at
the frame level 1-best phone sequences produced by decoders
A and B. This implicitly yields a joint phone segmentation and
the corresponding sequence of two-phone labels. The second
approach considers longer segments, spanning up to n phones
(phone n-grams) in the 1-best phone sequences and applies a
different way of computing co-occurrence statistics which does
not rely on discrete counts, but on a continuous measure of the
degree of co-occurrence of segments (phone n-grams).

In this paper, we present the latest developments attained
under the two approaches described above but using lattices in-
stead of 1-best decodings to compute statistics of n-grams (up
to n=3 and up to n=4) of phone co-occurrences. Systems have
been developed by means of open software (BUT phone de-
coders, HTK, SRILM, LIBLINEAR and FoCal) and evaluated
on a relevant database (NIST LRE2007).

The rest of the paper is organized as follows. Section 2
presents the main features of the lattice-based phonotactic SLR
system used as baseline in this work. Section 3 describes
the proposed approach, based on the use of lattices to com-
pute statistics of time-synchronous cross-decoder phone co-
occurrences. The experimental setup is briefly described in Sec-
tion 4. Results obtained in language recognition experiments
on the NIST LRE2007 database (pooled for all the target lan-
guages) are presented in Section 5. Finally, conclusions and
future work are outlined in Section 6.

2. Baseline Phonotactic SLR System

A phonotactic language recognizer based on phone lattices and
SVM scoring is used as baseline system. An energy-based
voice activity detector is applied in first place, which splits and
removes long-duration non-speech segments from the signals.



Then, the Temporal Patterns Neural Network (TRAPs/NN)
phone decoders, developed by the Brno University of Technol-
ogy (BUT) for Czech (CZ), Hungarian (HU) and Russian (RU)
[7], are applied to compute phone lattices. Regarding channel
compensation, noise reduction, etc. all the systems presented
in this paper rely on the acoustic front-end provided by BUT
decoders. BUT decoders have been previously used by other
groups (besides BUT [8], the MIT Lincoln Laboratory [9]) as
the core elements of their phonotactic language recognizers,
with high-accuracy results.

BUT decoders do not generate phone lattices but phoneme
posterior probabilities, which are stored and later processed
with the HVite decoder from HTK [10]. The config file of
each decoder must be modified in the following way: softer-
ing_func=gmm_bypass 0 0 0. BUT decoders take into account
three non-phonetic units: int (intermittent noise), pau (short
pause) and spk (non-speech speaker noise) along with 42, 58
and 49 phonetic units of Czech, Hungarian and Russian respec-
tively. For each unit, a three-state model is used, so three poste-
rior probabilities per frame are calculated and stored.

Before generating phone lattices, non-phonetic units int,
pau and spk are integrated into a single 9-state model (which
hereafter we will call pau). After that, the number of units is 43
for Czech, 59 for Hungarian and 50 for Russian. Then, posterior
probabilities are used as input to the HVite decoder from HTK
to produce phone lattices, which encode multiple hypotheses
with acoustic likelihoods. Finally, the lattice-tool from SRILM
[11] is used to produce the expected counts of phone n-grams.

3. Modeling Cross-Decoder Phone
Co-occurrences Using Lattices

Let us consider a choice of two decoders A and B from the
set of 3 possible decoders (CZ, HU and RU). Lattices of time-
synchronous cross-decoder phone co-occurrences can be ob-
tained by composing the posterior probabilities of two phone
models 4, j (¢ from decoder A and j from decoder B) at each
frame ¢, thus creating a single unit on the lattice which repre-
sents the time-synchronous co-occurrence of both phones.
BUT decoders produce a sequence of numbers representing
the posterior probabilities pis for each one of the three states s
of each phone ¢ at each frame ¢, encoded in the following way:

x(pi,s) = y/—2logpt , ¢))

To combine posterior probabilities of two phones, ¢ from de-
coder A and j from decoder B, at each state s and each frame ¢,
the following expression can be applied:
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Therefore, the new composite model ¢j, corresponding to the
time-synchronous co-occurrence of phones ¢ and j, has the
same number of states than models 7 and j.

In this work, all the phonetic units of decoder A are com-
bined with all phonetic units of decoder B, resulting compos-
ite models of three states. However, the pau model, which
is always present in both decoders for any choice of A and
B, is treated in an special way: a unique composite model

pau, pau of nine states is considered. Therefore, sets of pos-
terior probabilities for (42¥49)+1= 2059, (42*58)+1= 2437 and
(58*49)+1= 2843 units are calculated, for the choices of de-
coders CZ-HU, CZ-RU and HU-RU, respectively.

Once the new (quite large) sequence of posterior proba-
bilities representing the phone co-occurrences is obtained, the
HVite decoder from HTK can be used to get the (quite large
too) composite lattice. The symbols associated to the arcs of the
lattice represent the co-occurrence of two units, but the compu-
tational treatment is exactly the same as in the baseline system.

The generation of such a large lattice is computationally
very expensive. However, it can be drastically reduced by tak-
ing into account that many of the 2-phone combinations are,
in practice, unlikely and can be skipped. To determine which
2-phone combinations could be skipped, the sum of posterior
probabilities for each composite unit ¢j was calculated on the
entire training set of LRE 2007 database (see Subsection 4.1 for
details) in the following way:
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where S is the number of states corresponding to each com-
posite unit 55 and 7" is the total number of frames in the training
database. Once p;; has been calculated for all the combinations,
aranked list is created by sorting the values of p;; from highest
to lowest. Percentages of accumulated posterior probabilities
for the first m units are shown in Table 1. The unit with the
highest posterior probability (m=1) is pau pau in all cases.

Table 1: Accumulated posterior probabilities p;; (in %) for the
m composite units (co-occurrences) with the highest probabili-
ties, for several values of m (including 1 and all).

m | CZ.HU | CZRU | HURU
1| 2634% | 29.37% | 21.87%
50 | 73.86% | 73.79% | 68.92%
100 | 82.89% | 82.85% | 78.95%
200 | 90.39% | 90.26% | 87.50%
400 | 95.81% | 95.92% | 94.21%
800 | 98.88% | 99.01% | 98.33%
All 100% 100% 100%

The 400 most likely units accumulate 95% of the probabil-
ity, whereas the 800 most likely units accumulate almost 99%
of the probability. So, it does not seem necessary to take into
account larger sets of units.

4. Experimental Setup
4.1. Train, development and test datasets

Train and development data were limited to those distributed by
NIST to all 2007 LRE participants: (1) the Call-Friend Corpus;
(2) the OHSU Corpus provided by NIST for LREOS; and (3)
the development corpus provided by NIST for the 2007 LRE.
For development purposes, 10 conversations per language were
randomly selected, the remaining conversations being used for
training. Each development conversation was further split in
segments containing 30 seconds of speech. Evaluation was car-
ried out on the 2007 LRE evaluation corpus, specifically on the
30-second, closed-set condition (primary evaluation task).



4.2. Evaluation measures

In this work, systems will be compared in terms of: (1) Equal
Error Rate (EER), (2) average cost performance C'y,4 as defined
by NIST and (3) the so called C',1.r [12], an alternative perfor-
mance measure used in NIST evaluations. We internally con-
sider C'r, 1, r as the most relevant performance indicator, because
allows us to evaluate system performance globally by means of
an application independent single numerical value. C'r. 1. r does
not depend on application costs; instead, it depends on the cal-
ibration of scores, an important feature of detection systems.
C'11r has higher statistical significance than EER, since it is
computed starting from verification scores (in contrast to EE R,
which depends only on Accept/Reject decisions).

4.3. SVM modeling

All SLR systems developed in this work follow a SVM phono-
tactic approach. SVM vectors consist of counts of features rep-
resenting the phonotactics of an input utterance: phone n-grams
(baseline) and n-grams of phone co-occurrences (co-oc), both
weighted as in [13]. A Crammer and Singer solver for multi-
class SVMs with linear kernels has been applied [14], by means
of LIBLINEAR [15], which has been modified by adding some
lines of code to compute regression values. Finally, systems are
built by fusing the scores of three calibrated SVM-based phono-
tactic subsystems. The FoCal toolkit is used for calibration and
fusion (see [16] for details).

In this work, up to 4-grams have been considered. There-
fore, using the raw SVM feature space became unfeasible, due
to its huge dimension: the number of possible 4-grams could
be up to 59" and (59 * 50)4 for the phone lattice system and
the proposed phone co-occurrence lattice systems, respectively.
A sparse representation was used instead, which involved only
the most frequent features. That is, instead of using a full space
representation, features were ranked according to their counts
on the training dataset using a feature selection algorithm based
on frequency [17], and only those with the M highest counts
were considered. In this work M=100000. However, given an
input utterance, most features have null counts and are not ex-
plicitly included in the representation, so the actual size of the
SVM feature vector is far less than 100000 (see Table 3 for de-
tails).

5. Lattice-based Experimental Results

Phonotactic systems described in Sections 2 and 3 were de-
veloped and evaluated on the NIST LRE2007 database. Ta-
ble 2 shows EER, 100* Cqyg and Crrr performance in lan-
guage recognition experiments applying the baseline lattice sys-
tem and the proposed phone co-occurrence lattice systems (co-
oc) using different sets of the most likely cross-decoder co-
occurrences (from m=50 to 800). In both approaches, perfor-
mances using up to 3-grams and up to 4-grams are presented.
Note that we call system to the fusion of three subsystems, each
corresponding to one phone decoder in the baseline system (CZ,
HU, RU), and to a 2-decoder choice in the co-ocurrence systems
(CZ-HU, CZ-RU, HU-RU).

When up to 3-grams were considered, the baseline perfor-
mance (1.49% EER and 0.230 Crrr) was surpassed by the
use of the m=100 most likely co-occurrences. Best perfor-
mance was obtained by using m=400, which yielded 1.30%
EER and 0.209 C',1,r meaning around 13% and 11% relative
improvements in terms of EER and Cy 1 r, respectively. Fu-
sions of the baseline and different co-ocurrence systems is also

presented in Table 2 . Fusions led to better performances even
when using only the m=50 most likely co-occurrences (3% rel-
ative improvements). Again, best performance was achieved
for m=400: 1.22% EER and C'rr,r = 0.203 (meaning 18% an
15% relative improvements, respectively).

When up to 4-grams were considered, the baseline perfor-
mance improved: 1.37% EER and 0.219 Crrr, meaning 8%
and 8.7% relative improvements with regard to using up to 3-
grams. Best results with the proposed phone co-occurrence ap-
proach were also obtained for m=400: 1.29% EER and 0.203
Crrr, almost the same result as using up to 3-grams. The
best fusion yielded 1.17% EER and Crrr = 0.197 (meaning
15% an 10% relative improvements), better performance (on
the same task) than that reported by state-of-the-art phonotac-
tic systems [13][18], thus supporting the use of cross-decoder
dependencies for language recognition.

Table 2: Performance (EER, 100 * Cgyy and Crpgr) for: (1)
the baseline lattice system; (2, 3, 4, 5, 6) the proposed phone
co-occurrence lattice systems (co-oc) when the m most likely
co-ocurrences (m from 50 to 800) were considered; and the
fusion of the baseline and the co-occurrence systems. Results
when using up to 3-grams and up to 4-grams are shown.

n System EER 100 * Cavg | CLLR
(1) Baseline 1.49 % 1.54 0.239

(2) 50 co-oc 1.71% 1.68 0.288

(3) 100 co-oc 1.28% 1.48 0.241

(4) 200 co-oc 1.31% 1.44 0.224

(5) 400 co-oc 1.30% 1.37 0.209

3 | (6) 800 co-oc 1.45% 1.35 0.221
M +Q2) 1.46% 1.46 0.232
MH+@3) 1.34% 1.43 0.224
M+ 1.21% 1.23 0.210

(M +(5) 1.22% 1.34 0,203

(1) +(6) 1.30% 1.35 0.210

(1’) Baseline 1.37% 1.46 0.219
(2’) 50 co-oc 1.61% 1.56 0.262
(3’) 100 co-oc | 1.41% 1.39 0.239
(4’) 200co-oc | 1.27% 1.45 0.221
(5’) 400 co-oc | 1.29% 1.30 0.203

4 |(6) 800co-oc | 1.43% 1.31 0.219
1) +(@2) 1.29% 1.25 0.212

1) +@3) 1.15% 1.42 0.210

1)+ @) 1.17% 1.27 0,204

1)+ () 1.17% 1.15 0,197

1) +(6) 1.25% 1.16 0.203

For the sake of completeness, the performance of subsys-
tems (1-decoder configurations for the baseline system and 2-
decoder configurations for the m=400 co-occurrence system) is
shown in Table 3. Regarding subsystems, note that 2-decoder
subsystems performed consistently better than 1-decoder sub-
systems. Table 3 also shows the average size of the SVM feature
vectors under the sparse representation (see Subsection 4.3),
computed on the training and test sets for the baseline and the
proposed co-occurrence systems.

Note that training and decoding times depend linearly on
the actual size of the SVM feature vectors. When up to 3-grams
are used, vectors in the training set are 30% more dense for
the proposed approach than for the baseline system. However,
when up to 4-grams are considered, vectors in the training set
are 47% less dense for the proposed approach than for the base-
line system. In both cases, vectors in the test set are smaller for



the proposed approach, which means that decoding times are
also smaller than for the baseline system (specially when using
up to 4-grams).

Table 3: Performance (EER and C 1 r) and average vector size
on the training and test sets for the baseline and the proposed
co-occurrence systems (co-oc) when the m=400 most likely co-
occurrences are considered

Average

vector size
n Subsystem EER | Crrr | train test
CZ | 344 % | 0541 | 12155 | 2610
baseline HU | 2.71% | 0.403 | 14166 | 2830
3 RU 3.11% | 0.464 | 13045 | 2719
CZ-HU | 1.72% | 0.273 | 18222 | 2340
400 cooc CZ-RU | 2.19% | 0.334 | 18991 | 2474
HU-RU | 1.82% | 0.277 | 18873 | 2432
CZ 295% | 0.464 | 35641 | 5533
baseline HU | 2.02% | 0.322 | 35983 | 5571
4 RU 2.55% | 0.408 | 36919 | 6068
CZ-HU | 1.97% | 0.283 | 19534 | 2467
400 cooc CZ-RU | 2.05% | 0.329 | 20605 | 2647
HU-RU | 1.84% | 0.273 | 20067 | 2555

6. Conclusions

In this paper, the latest developments under an approach using
lattices of cross-decoder co-occurrences of phone n-grams in
SVM-based phonotactic language recognition have been pre-
sented and evaluated. The proposed approach relies on the
assumption that cross-decoder co-occurrence information is
somehow specific to each target language. The approach does
not involve significant additional computation with regard to a
baseline phonotactic system. It represents just a means to ex-
tract more information from existing decodings.

If all the possible co-occurrences were considered, com-
putational costs would make the approach unfeasible. But the
number of phone co-occurrences can be drastically reduced by
taking into account that many of the 2-phone combinations
in lattices are, in practice, unlikely and can be skipped. An
exhaustive study considering different number of the m most
likely cross-decoder co-occurrences has been made. Best re-
sults were obtained considering m=400 (about 16% of all the
possible co-occurrences). The proposed phone co-occurrence
lattice system outperformed the baseline phone lattice system
both considering n-grams up to n=3 (yielding around 13% rel-
ative improvement) and up to n=4 (yielding around 7% relative
improvement). In both cases, best results were obtained by con-
sidering the m=400 most likely cross-decoder coocurrences:
1.29% EER and Crr = 0.203. The fusion of the baseline
system with the proposed approach yielded 1.22% EER and
Crrr = 0.203 (meaning 18% and 15% relative improvements,
respectively) for n=3, and 1.17% EER and Crrr = 0.197
(meaning 15% and 10% relative improvements, respectively)
for n=4. Better performance (on the same task) than that re-
ported for state-of-the-art phonotactic systems, thus supporting
the use of cross-decoder dependencies for language recognition.

Future work will focus on increasing the robustness of
phonotactic approaches that integrate time and cross-stream de-
pendencies using time-synchronous co-occurrences of phone n-
grams for 3-decoder configurations.
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