# University of the Basque Country (EHU) Systems for the NIST 2011 LRE

Mikel Penagarikano, Amparo Varona, Luis Javier Rodríguez-Fuentes, Mireia Diez, Germán Bordel

> GTTS, Dept. Electricity and Electronics University of the Basque Country (EHU) Leioa, Spain

> > mikel.penagarikano@ehu.es

NIST 2011 LRE Workshop

Atlanta (Georgia), USA December 6-7, 2011



EHU Systems for LRE11 (Atlanta, December 6-7 2011)

#### Outline

#### Train and development data

- New target languages
- Data partitioning

#### 2 System description

- Short description
- Phonotactic subsystems
- Acoustic subsystems
- Backend & Fusion
- Submission

#### 3 Analysis of the results

- Subsystem comparison
- Post-eval analisys

#### 4 Conclusions



New target languages Data partitioning

#### New target languages

- 9 new target languages: Arabic Iraqi, Arabic Levantine, Arabic Maghrebi, Arabic MSA, Czech, Lao, Panjabi, Polish, Slovak.
- NIST data: 100 30-second segments per new language. Randomly split in two halves:
  - Ire11-train, for training
  - Ire11-dev, for development/test
- Aditional data used by BLZ consortium (BLZ-train)<sup>1</sup>:
  - Arabic Iraqi: CTS from LDC2006S45
  - Arabic Levantine: CTS from LDC2006S29
  - Arabic Maghrebi: BN speech from Arrabia TV (Morocco)
  - Arabic MSA: BN speech from Kalaka-2 (Al Jazeera)
  - Czech:
    - BN speech from the COST278 BN database
    - Telephone speech from LDC2000S89 and LDC2009S02
  - Lao: Telephone speech from VOA3 (LRE09)
  - Panjabi: no data
  - Polish: BN speech from Telewizja Polska
  - Slovak: BN speech from the COST278 BN database

 $^{1}$ Broadcast news speech was downsampled to 8 kHz and applied the *Filtering* and *Noise Adding Tool* (FANT) to simulate a telephone channel. <  $\Box \rightarrow \langle \Box \rangle = \langle \Box \rangle$ 



#### Train and development data

System description Analysis of the results Conclusions New target languages Data partitioning

#### Data partitioning

- Development: restricted to segments audited by NIST.
  - The evaluation set of NIST 2007 LRE
  - The evaluation set of NIST 2009 LRE
  - Ire11-dev
  - 8500 30-second segments
- Train: 66 training subsets, including target and non-target languages:
  - CTS from previous LREs (18 subsets)
  - Narrow-band speech (telephone speech?) from VOA/LRE2009 (30 subsets)
  - Ire11-train (9 subsets)
  - BLZ-train (9 subsets)
  - 35000 long (>30-second) segments



∃→ < ∃→</p>

Short description Phonotactic subsystem Acoustic subsystems Backend & Fusion Submission

#### Short description

- High-level subsystems (phonotactic):
  - Czech phone-lattice phonotactic SVM
  - Hungarian phone-lattice phonotactic SVM
  - Russian phone-lattice phonotactic SVM
- Low-level subsystems (acoustics):
  - Linearized Eigenchannel GMM (Dot-Scoring) with channel compensated statistics
  - Generative iVectors
- Optional ZT-norm
- Generative backend
- Multiclass linear logistic regression
- Minimum expected cost Bayes decision



#### Short description

Phonotactic subsyster Acoustic subsystems Backend & Fusion Submission

# Disk failure

- Two weeks before the submission deadline, and due to a mechanical failure of a disk we lost the LRE11 data:
  - Indexes (VOA time marks)
  - Speech wave files
  - Baum-Welch statistics
  - Expected counts of *n*-grams (up to 4-grams)
- No time to start again (nor money for professional data recovery)
- We found partial copies of:
  - Channel-compensated Baum-Welch statistics
  - Expected counts of 3-grams
- The submission was adapted to use the available data (speech signals, statistics, etc.)
  - Phonotactic subsystem was limited to 3-grams.
  - iVectors were computed on the compensated sufficient statistics space
- See: Stuck inside of a disk failure



Short description Phonotactic subsystems Acoustic subsystems Backend & Fusion Submission

#### Phonotactic subsystems

| Common approach to SVM-based phonotactic language recognition                                                                                      |                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\begin{array}{c} Phone \\ Decoder \rightarrow \end{array}  \begin{array}{c} Phone-state \\ Posteriors \end{array} \rightarrow \\ Lat \end{array}$ | $\begin{array}{l} {\sf trice} \to {\sf Expected\ counts}\\ {\sf of\ n-grams} \end{array} \to {\sf SVM-based}\\ {\sf Language\ Models}\end{array}$ |  |  |  |  |

Freely available software was used in all the stages:

- **Phone Decoders:** TRAPS/NN phone decoders developed by BUT for Czech (CZ), Hungarian (HU) and Russian (RU).
- Phone-state Posteriors & Lattice: HTK along with the BUT recipe
- Expected counts of *n*-grams: The *lattice-tool* from *SRILM*
- **SVM modeling:** *LIBLINEAR* (a fast linear-only version of libSVM). Modified by adding some lines of code to get the regression values (instead of class labels).



Short description Phonotactic subsystems Acoustic subsystems Backend & Fusion Submission

#### Experimental setup

- An energy-based voice activity detector is applied to split and remove long-duration non-speech segments from signals.
- Non-phonetic units: *int* (intermittent noise), *pau* (short pause) and *spk* (non-speech speaker noise) are mapped to a single non-phonetic unit.
- A ranked (frequency-based) sparse representation, which involved only the *M* most frequent features (unigrams + bigrams + ... + *n*-grams) is used
- SVM vectors consist of expected counts of phone *n*-grams extracted from the lattices, converted to frequencies and weighted with regard to their background probabilities as:

$$w_i = rac{1}{\sqrt{p(d_i | background)}}$$

• The SVM language models are trained using a L2-regularized L1-loss support vector classification solver.

A B > A B >

Short description Phonotactic subsystems Acoustic subsystems Backend & Fusion Submission

### Acoustic subsystems

Both systems have in common the acoustic parameters:

• 7MFCC + SDC (7-2-3-7) & gender independent 1024 mixture GMM

|                                                                                                  | Dot-Scoring          |                                                                               |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Statistics extraction $\rightarrow$                                                              | Channel compensation | $\rightarrow \ Dot\text{-}Scoring$                                            |  |  |  |  |
| Channel matrix:<br>• estimated using only<br>• 500 channels<br>• 10 ML-MD iterations             | 0 0 0                |                                                                               |  |  |  |  |
| Generative iVector subsystem                                                                     |                      |                                                                               |  |  |  |  |
| iVector extraction                                                                               | $\rightarrow$        | Generative Gaussian<br>Language Models                                        |  |  |  |  |
| Total variability matrix:<br>• estimated using only<br>• 500 dimensions<br>• 10 ML-MD iterations |                      | <ul> <li>↓ G</li> <li>↓ &lt; E &gt; &lt; E &gt; &lt; E &gt; &lt; E</li> </ul> |  |  |  |  |
| EHU Systems for LRE11 (Atlanta, December 6-7 2011)                                               |                      |                                                                               |  |  |  |  |

Short description Phonotactic subsystems Acoustic subsystems Backend & Fusion Submission

#### Backend & Fusion

- An independent backend and fusion was estimated for each nominal duration (3, 10 and 30 sec). Both the backend and the fusion were estimated with the FoCal toolkit.
- A ZT-norm was optionally applied to the scores prior to the backend
- Each subsystem produced 66 scores that were mapped to 24 target languages by means of a generative Gaussian backend
  - Discriminative Gaussian backends were tried but showed no improvement at development.
- Multiclass linear logistic regression based fusion was applied
  - Pairwise and language family-wise regressions were tried but showed no improvement at development.
- Minimum expected cost Bayes decisions were made



(B) ( B)

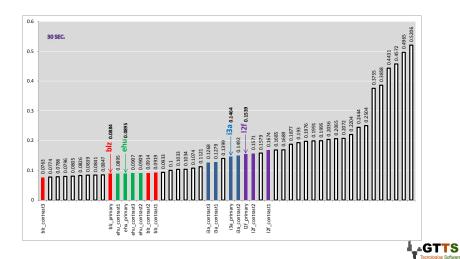
Short description Phonotactic subsystems Acoustic subsystems Backend & Fusion Submission

#### Submission

- One primary and three contrastive systems were submitted.
- The 5 subsystems were included in each submission.
- Submissions differ in the use of ZT-norm and the development subsets used for the estimation of fusion and calibration parameters of test signals with nominal duration of 10 and 3 seconds.

| System        | zt-norm | Backend & Fusion Train Dataset |             |                   |  |
|---------------|---------|--------------------------------|-------------|-------------------|--|
|               |         | 30s                            | 10s         | 3s                |  |
| Primary       | No      | dev30                          | dev10       | dev03             |  |
| Contrastive 1 | No      | dev30                          | dev10+dev30 | dev03+dev10+dev30 |  |
| Contrastive 2 | Yes     | dev30                          | dev10       | dev03             |  |
| Contrastive 3 | Yes     | dev30                          | dev10+dev30 | dev03+dev10+dev30 |  |

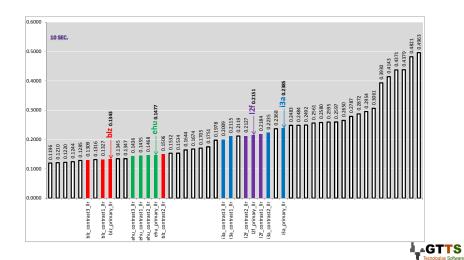
Table: Main features of the EHU primary and contrastive systems.




\_ ∢ ≣⇒

Train and development data Analysis of the results

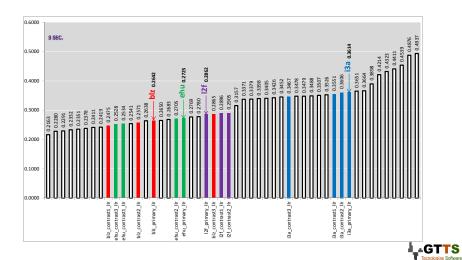
Subsystem comparison


## Subsystem comparison - 30 seconds



S

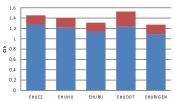
Subsystem comparison Post-eval analisys


#### Subsystem comparison - 10 seconds

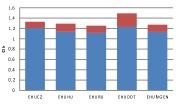


EHU Systems for LRE11 (Atlanta, December 6-7 2011)

Subsystem comparison Post-eval analisys

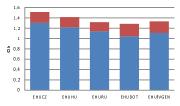

# Subsystem comparison - 3 seconds



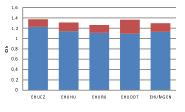

EHU Systems for LRE11 (Atlanta, December 6-7 2011)

Subsystem comparison Post-eval analisys

## ZT-norm & generative/discriminative backend - 30 seconds




Generative GB




ZTnorm + Generative GB

**Discriminative GB** 



ZTnorm + Discriminative GB



cnologías Software

Subsystem comparisor Post-eval analisys

#### Phonotactic vs. Acoustic - 30 seconds

|             | new Cav | /g x 100 | full Cavg x 100 |      |
|-------------|---------|----------|-----------------|------|
|             | min     | act      | min             | act  |
| EHUCZ       | 12,15   | 14,02    | 2,97            | 3,76 |
| EHUHU       | 11,96   | 14,28    | 2,71            | 3,62 |
| EHURU       | 11,38   | 13,76    | 2,57            | 3,46 |
| Phonotactic | 7,73    | 10,13    | 1,47            | 2,28 |
| EHUDOT      | 11,62   | 14,18    | 2,19            | 3,17 |
| EHUIVGEN    | 11,58   | 14,15    | 2,60            | 3,50 |
| Acoustic    | 11,18   | 13,30    | 2,00            | 2,85 |
| ALL         | 6,16    | 8,92     | 0,94            | 1,69 |



EHU Systems for LRE11 (Atlanta, December 6-7 2011)

<ロ> <四> <四> <日> <日> <日</p>

Subsystem comparison Post-eval analisys

#### Greedy selection - 30 seconds

#### 14 13 -min 12 act 11 10 9 8 7 6 5 4 EHUHU EHURU EHUIVGEN EHUCZ EHUDOT

# Cavg x 100

EHU Systems for LRE11 (Atlanta, December 6-7 2011)

< 17 ▶

Tecnologías Software

→

-

#### Conclusions

- A very competitive submission was obtained based on state of the art language recognition technology.
- Data collection may have been the key.
- For 3-second tests, using a larger development set (3, 10 and 30-second segments) increased the robustness of the system.
- Unlike the BLZ submision, the ZT-norm didn't provide any improvement.
- The discriminative backend improved only the Dot-Scoring system.
- Third participation, with a great performance improvement. In 2007, avgCost was around 0,30 and in 2009 it was around 0,07.



∃ → (∃)

# Thank you!



EHU Systems for LRE11 (Atlanta, December 6-7 2011)

<ロ> <四> <四> <日> <日> <日</p>