

ZTF-FCT Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnologia

Maider Zamalloa^{1,2}, Mikel Peñagarikano¹, Luis Javier Rodriguez-Fuentes¹, Germán Bordel^{1,} Juan Pedro Uribe²

¹GTTS, Electricity and Electronics Department, University of the Basque Country, Spain ²Ikerlan – Technological Research Centre, Spain

Outline

Introduction

- The Ambient Intelligence vision
- Speaker Tracking
- Low-latency Online Speaker Tracking System
- Experiments
- Conclusions

Introduction — The Aml vision

- Ubiquitous Computing
 - Envisages the integration of computing and telecommunication capabilities in daily objects
 - A term defined by M. Weiser in 1991:

... The most profound technologies are those that dissapear. They wave themselves into the fabric of everyday life until they are indistinguishable from it....

The Ambient Intelligence (Aml) vision

- Generalizes the Ubiquitous Computing term
- A vision oriented towards the usability of ubiquitous technologies and promoted by the group ISTAG of the European Commission
- It was defined in 2001 through a set of scenarios and recommendations

Introduction — The Aml vision

- The AmI paradigm is caracterized by systems that are:
 - *Embedded*: Integrated into the environment
 - Context-aware: Recognize users and user situational context
 - *Personalized*: Tailored to user needs
 - Adaptive: Change in response to user
 - Anticipatory: Anticipate to user needs
- Main objective: support people carrying out everyday life activities in a *natural* way
- Transparency is critical

Introduction — The Aml vision

- The Aml paradigm is caracterized by systems that are:
 - *Embedded*: Integrated into the environment
 - Context-aware: Recognize users and user situational context
 - *Personalized*: Tailored to user needs
 - Adaptive: Change in response to user
 - Anticipatory: Anticipate to user needs
- Main objective: support people carrying out everyday life activities in a *natural* way
- Transparency is critical

Natural and Intelligent Interfaces are needed

- Speech is a natural interface for human interaction
 - It conveys many user related information:
 - The message
 - The language of the message
 - The speaker location
 - The speaker identity
 - The emotional state of speaker
 - etc.
- It is a very suitable means to support user interaction, adaptation and monitorization
- Speaker tracking and speaker diarization technologies may be used

- In Speech Technologies area, speaker diarization and speaker tracking are well known tasks
- Both answer the question: Who spokes when?
- But differ in:
 - Speaker Tracking aims to detect audio segments correspondiing to a known set of target speakers
 - Speaker Diarization consists of detecting speaker turns without any prior knowledge about the target speakers

- Speaker tracking and diarization primary application domains
 - Telephone conversations
 - Broadcast news
 - Meeting recordings
- Common approaches consists of two uncoupled steps:
 - Audio Segmentation
 - Speaker detection
- In an Aml Environment speaker detection must be continuous and real-time

- Speaker tracking and diarization primary application domains
 - Telephone conversations
 - Broadcast news
 - Meeting recordings

Audio recording is fully available before processing!!

- Common approaches consists of two uncoupled steps:
 - Audio Segmentation
 - Speaker detection
- In an AmI Environment speaker detection must be continuous and real-time

- Speaker tracking and diarization primary application domains
 - Telephone conversations
 - Broadcast news
 - Meeting recordings

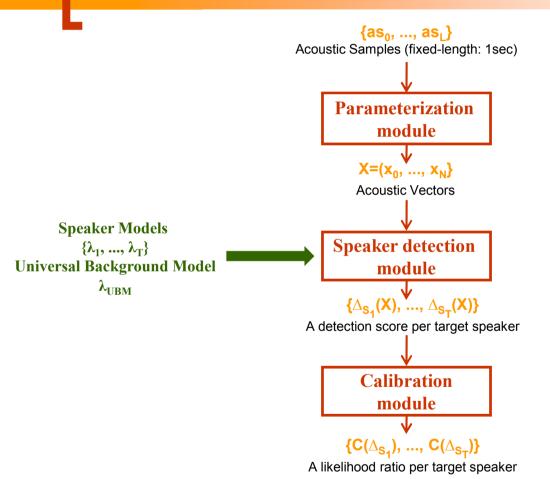
Audio recording is fully available before processing!!

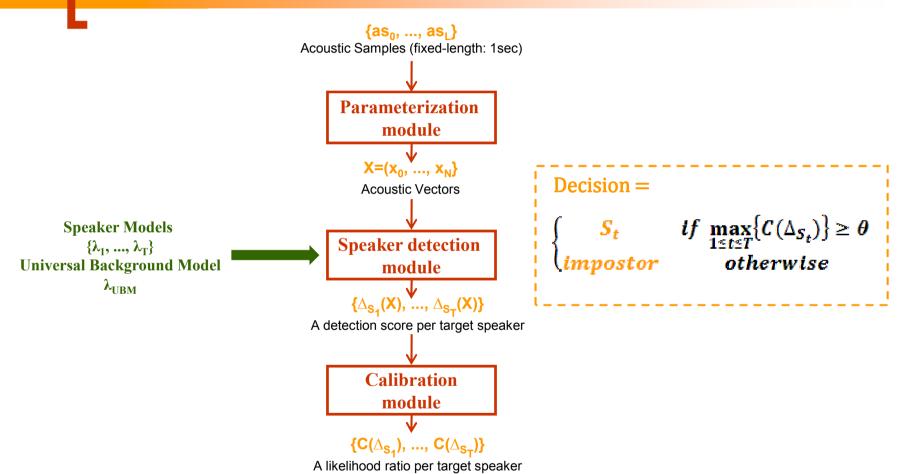
- Common approaches consists of two uncoupled steps:
 - Audio Segmentation
 - Speaker detection
- In an Aml Environment speaker detection must be continuous and real-time

State of the arte approaches are not suitable for low-latency online speaker detection

ICAART 2010

- System is designed for an intelligent home environment
 - It tracks known speakers continuously
 - The expected number of targets is low (i.e. the members of a family)
 - The scenario requires almost instantaneous (low-latency) speaker tracking decisions
- So, a very simple speaker tracking algorithm is designed
 - Joint speaker segmentation and speaker detection is performed
 - Fixed-length audio segments are defined and processed





- Parameterization Module
 - Channel Normalization: Dynamic Cepstral Mean Normalization
 - Acoustic Vectors: 12 Mel Frequency Cepstral Coefficients (MFCC) and deltas
 - Parameterization is done by Sautrela Framework (Penagarikano, www.sautrela.org)
- Speaker Detection Module
 - Acoustic Speaker Models $\lambda_t \in [\lambda_1, ..., \lambda_T]$
 - A Gaussian Mixture Model (GMM) adapted from an universal model λ_{UBM}
 - In adaptation, non-overlapped single-speakers segments are used
 - Given λ_t and the parameterized acoustic segment X, the speaker detection score $\Delta_{S_t}(X)$ is:

• $\Delta_{S_t}(X) = L(X|\lambda_t) - L(X|\lambda_{UBM})$ where $L(X|\lambda)$ is the log-likelihood of X given λ

M. Penagarikano and G. Bordel, "SAUTRELA: A Highly Modular Open Source Speech Recognition Framework", In Proceedings of the IEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2005.

- Calibration Module
 - Maps detection scores to likelihood ratios by applying a linear transform *C*:

• $\{\Delta_{S_t} | t \in [1,T]\} \rightarrow \{C(\Delta_{S_t}) | t \in [1,T]\}$

- Scaling parameters are computed over a development corpus
 - Optimization process is based on *Maximizing Mutual Information*
- Minimum expected cost based decision threshold is applied over calibrated scores

$$Thresold = \theta = ln\left(\frac{C_{fa}(1 - P_{target})}{C_{miss}P_{target}}\right)$$
$$Decision = \begin{cases} S_t & \text{if } \max_{1 \le t \le T} \{C(\Delta_{S_t})\} \ge \theta \\ \text{impostor} & \text{otherwise} \end{cases}$$

• Calibration is done by FoCal toolkit (Brummer, sites.google.com/site/nikobrummer/focal)

ICAART 2010

23 January 2010, Valencia

Experimental setup

- AMI (*Augmented Multipart Interaction*) Corpus
 - Real-time human interaction in the context of smart meeting rooms
 - Audio & video data collected in 3 instrumented rooms (Edinburgh, IDIAP, TNO)
 - 4 english (mostly non-native) speakers per meeting; 4 meetings per session; 30 minutes meetings
- Experiments are based on 15 Edinburgh sessions
 - 3 speakers act as target, the fourth one as impostor
 - Two independent subsets are defined:
 - Development (Dev) : 8 sessions (32 meetings)
 - Evaluation (Eval) : 7 sessions (28 meetings)
 - Dev and Eval sets consist of:
 - Train dataset: 2 meetings per session (random selection)
 - Test dataset: 2 meetings per session
 - For time references AMI corpus manual annotations are used

Experimental setup

- Two online speaker tracking systems which differ in UBM estimation data:
 - UBM-g uses15 gender-balanced meetings from all sites except Edinburgh
 - UMB-t uses only speech data from target speakers
- System performance is compared to an offline reference system following a clasical two-stage approach
 - Audio segmentation is done by a similar approach to well known BIC
 - Speaker detection is carried out by computing speaker model likelihood ratios
- Performance measure:
 - $2 \times PRC \times RCL$
 - \circ $F_{measure} = \frac{PRC + RCL}{PRC + RCL}$

ranges from 0 to 1, where:

- Precision (PRC) computes correctly detected target time from total target time
- Recall (RCL) estimates correctly detected target time from actual target time

Results – online vs offline

The expected performance loss of the low-latency online system is low:

			Dev	
		PRC	RCL	F _{measure}
	online	0.66	0.92	0.77
UBM-g	ref	0.67	0.93	0.78
	online	0.67	0.91	0.77
UBM-t	ref	0.69	0.92	0.79

Results – online vs offline

The expected performance loss of the low-latency online system is low:

			Dev		Eval			
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}	
UDM ~	online	0.66	0.92	0.77	0.69	0.92	0.78	
UBM-g	ref	0.67	0.93	0.78	0.69	0.93	0.79	
UBM-t	online	0.67	0.91	0.77	0.71	0.91	0.8	
	ref	0.69	0.92	0.79	0.72	0.92	0.81	

Results – online vs offline

The expected performance loss of the low-latency online system is low:

			Dev			Eval	
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}
	online	0.66	0.92	0.77	0.69	0.92	0.78
UBM-g	ref	0.67	0.93	0.78	0.69	0.93	0.79
UBM-t	online	0.67	0.91	0.77	0.71	0.91	0.8
	ref	0.69	0.92	0.79	0.72	0.92	0.81

With respecto to the classical offline system: UBM-g: 1.26% relative degradation UBM-t: 1.23% relative degradation

Results – UBM-g vs UBM-t

 UBM-t system slightly outperforms the performance of UBM-g system:

			Dev			Eval	
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}
onling	UBM-g	0.66	0.92	0.77	0.69	0.92	0.78
online	UBM-t	0.67	0.91	0.77	0.71	0.91	0.8
reference	UBM-g	0.67	0.93	0.78	0.69	0.93	0.79
	UBM-t	0.69	0.92	0.79	0.72	0.92	0.81

Results – UBM-t vs UBM-g

 UBM-t system slightly outperforms the performance of UBM-g system:

		Dev			Eval		
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}
1.	UBM-g	0.66	0.92	0.77	0.69	0.92	0.78
online	UBM-t	0.67	0.91	0.77	0.71	0.91	0.8
reference	UBM-g	0.67	0.93	0.78	0.69	0.93	0.79
	UBM-t	0.69	0.92	0.79	0.72	0.92	0.81

Results support the use of a specific UBM for room and speaker set: There is a high consistency between the UBM and target speakers But a different UBM model must be estimated for each set of target speakers

Results – Calibration

• Calibration stage leads to a better performance in all cases:

		ι	Jncalibra	ated		Calibrat	ted
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}
Dou	UBM-g	0.66	0.92	0.77	0.81	0.8	0.81
Dev	UBM-t	0.67	0.91	0.77	0.82	0.83	0.82
Errol	UBM-g	0.69	0.92	0.78	0.78	0.85	0.8
Eval	UBM-t	0.71	0.91	0.8	0.81	0.85	0.83

(Have a look at the paper for the results of the reference system)

Results – Calibration

• Calibration stage leads to a better performance in all cases:

		Uncalibrated			Calibrated			
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}	
Dev	UBM-g	0.66	0.92	0.77	0.81	0.8	0.81	
Dev	UBM-t	0.67	0.91	0.77	0.82	0.83	0.82	
E al	UBM-g	0.69	9.92	0.78	0.78	0.85	0.8	
Eval	UBM-t	0.71	0.91	0.8	0.81	0.85	0.83 2	

(Have a look at the paper for the results of the reference system)

Results – Calibration

• Calibration stage leads to a better performance in all cases:

		Uncalibrated				Calibrated			
		PRC	RCL	F _{measure}	PRC	RCL	F _{measure}		
Dou	UBM-g	0.66	0.92	0.77	0.81	0.8	0.81		
Dev	UBM-t	0.67	0.91	0.77	0.82	0.83	0.82		
Fuel	UBM-g	0.69	0.92	0.78	0.78	0.85	0.8		
Eval	UBM-t	0.71	0.91	0.8	0.81	0.85	0.83		

(Have a look at the paper for the results of the reference system)

3.75% relative improvement

Conclusions

- A online speaker tracking for an AmI scenario is proposed
 - Processes continuous audio streams
 - Outpus an identification decision for fixed-length segments
- The system performance is compared to a reference system based on offline segmentation
 - Even if speaker tracking actually takes advantage from an offline segmentation, online system presents little degradation
 - Depending on the scenario and required latency, offline segmentation may not be feasible
- Better results are attained when the UBM matches test conditions (same room, same speakers)

Thank you!

Any questions?

23 January 2010, Valencia

ZTF-FCT Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnologia

Maider Zamalloa^{1,2}, Mikel Peñagarikano¹, Luis Javier Rodriguez-Fuentes¹, Germán Bordel^{1,} Juan Pedro Uribe²

¹GTTS, Electricity and Electronics Department, University of the Basque Country, Spain ²Ikerlan – Technological Research Centre, Spain

